Cell type atlasing of whole human brains using HOLiS: an optimized pipeline for staining, clearing, imaging, and analysis
使用 HOLiS 对整个人脑进行细胞类型图谱分析:用于染色、透明化、成像和分析的优化流程
基本信息
- 批准号:10377810
- 负责人:
- 金额:$ 912.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-09-21
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAtlasesAutopsyBase of the BrainBehaviorBenchmarkingBig DataBrainBrain MappingBrain imagingCellsChemicalsCognitionCollectionComplementComplexCosts and BenefitsDataData AnalysesData SetDevelopmentEmotionsEnsureEquilibriumFoundationsFutureGeneticGoalsHeterogeneityHistologicHumanImageImage AnalysisImaging technologyInformation RetrievalInfrastructureInvestigationKnowledgeLabelLightLinkLogicMagnetic Resonance ImagingMethodologyMethodsMicroscopyModernizationMolecularMolecular ProfilingMonoclonal AntibodiesMorphologyMusNamesNeurogliaNeuronsNoiseOutputPatternPopulationProductionProtocols documentationRefractive IndicesResolutionSamplingScanningScientistSignal TransductionSliceSpeedStainsStereotypingStructureSystemTechniquesTechnologyTestingThickTimeTissuesValidationanalysis pipelinebasebrain cellbrain researchcell typecellular imagingcomparativecomputer sciencecomputerized data processingcomputerized toolsdata analysis pipelinedeep learningexhaustioninnovationmagnetic fieldmethod developmentmultimodalitymultiplexed imagingnew technologynovelorganizational structurepreservationprotein profilingprototypereconstructionscale upsynergismtargeted imagingtissue preparationtissue processing
项目摘要
Project Summary (Abstract)
Gaining a comprehensive understanding of brain-wide cellular organization in the human brain has long been
recognized as a critical foundation for understanding complex brain functions, including who we are as humans.
In this project we propose to take on this challenge and establish a pipeline capable of imaging the entire human
brain at cellular resolution. We believe that the convergence of our novel technologies for tissue processing
and clearing, ultra-fast 3D microscopy and highly efficient analysis will make this problem tractable and scalable,
marking a new paradigm in human brain research.
As part of BICCN, the Osten and Wu labs, have already made significant progress towards deciphering the cell
type and three-dimensional organizational logic of the mouse brain, using both genetic and molecular labeling
in combination with whole mouse brain imaging. However, scaling efforts ~2,000x from mouse to human brain
requires both technical and conceptual innovation to extract maximum information and ensure high efficiency.
Our approach will center on a new Human brain Optimized Light-Sheet HOLiS microscopy platform developed
by the Hillman lab, whose speed, efficiency and multiplexing capabilities are expected to enable cellular-
resolution imaging across the entire human brain in only a few days. The HOLiS platform is complemented by a
new optimized tissue preparation method for human brain developed by the Wu lab, named HuB.Clear,
optimized for multiplexed staining and clearing of highly tractable 5 mm thick, full human brain slabs. Our
computational data analysis pipelines developed by the Osten lab will leverage deep learning-based data
analysis and permit every cell in the brain to be registered within the whole brain 7T MRI volume. Our new human
brain common coordinate framework will include cellular diversity analysis based on multiplex protein profiling
and precise spatial characterization. The following benchmarks will be achieved during the 3-year project:
Our tissue preparation method will provide: 1) complete tissue clearing while preserving morphology to allow
faithful data production and integration with MRI, and 2) reliable and quantitative whole mount immunolabeling
with diverse targets to allow multiplex molecular profiling across the entire brain. Our imaging technology will
provide: 1) sufficient resolution and multiplexing capacity, and 2) high-throughput speed to allow exhaustive
analyses across multiple whole human brains. Our data analysis methods will provide: 1) infrastructure capable
of processing whole human brain imaging data, and 2) algorithms optimized for HOLiS to extract and interpret
rich molecular and cellular information with the latest advances in computer science.
The resulting pipeline will be easily scalable and sharable with maximized benefit-cost ratio, opening the
door to imaging 100's or even 1,000's of human brains in coming years. Our results will link cellular diversity and
morphology with molecular signatures across the entire human brain at a sufficient cellular resolution and to
facilitate further functional investigations and cross-species comparisons in synergy with other BICCN efforts.
项目摘要(摘要)
长期以来,全面了解人类大脑中的全脑细胞组织一直是
被认为是理解复杂大脑功能的关键基础,包括我们作为人类的身份。
在这个项目中,我们建议接受这一挑战,并建立一个能够对整个人类进行成像的管道。
脑细胞分辨率。我们相信,我们的组织处理新技术的融合
清晰、超快的3D显微镜和高效的分析将使这个问题变得易于处理和可扩展,
标志着人类大脑研究的新范式。
作为BICCN的一部分,Osten和Wu实验室已经在破译细胞方面取得了重大进展
类型和小鼠大脑的三维组织逻辑,使用遗传和分子标记
与小鼠全脑成像相结合。然而,将工作量从小鼠扩展到人脑约2,000倍
需要技术和概念创新,以提取最大信息并确保高效率。
我们的方法将集中在一个新的人脑优化光片HOLiS显微镜平台开发
希尔曼实验室,其速度,效率和多路复用能力,预计将使蜂窝-
在短短几天之内就可以完成对整个人脑的高分辨率成像。HOLiS平台由一个
吴实验室开发的一种新的优化人脑组织制备方法,名为HuB.Clear,
优化用于高度易处理的5 mm厚的全人脑切片的多重染色和清洁。我们
Osten实验室开发的计算数据分析管道将利用基于深度学习的数据
分析并允许大脑中的每个细胞在整个大脑7 T MRI体积内被记录。我们的新人类
脑共同坐标框架将包括基于多重蛋白质谱的细胞多样性分析
和精确的空间特征。在3年项目期间将实现以下基准:
我们的组织制备方法将提供:1)完全组织清除,同时保留形态,
可靠的数据产生和与MRI的整合,以及2)可靠和定量的整体安装免疫标记
具有不同的靶点,以允许在整个大脑中进行多重分子分析。我们的成像技术将
提供:1)足够的分辨率和多路复用能力,以及2)高吞吐量速度,
对多个完整人类大脑进行分析。我们的数据分析方法将提供:1)基础设施能力
处理整个人脑成像数据,2)HOLiS优化算法,以提取和解释
丰富的分子和细胞信息与计算机科学的最新进展。
由此产生的管道将很容易扩展和共享,最大限度地提高效益-成本比,
在未来的几年里,我们将有机会对100个甚至1,000个人类大脑进行成像。我们的研究结果将把细胞多样性和
以足够的细胞分辨率在整个人脑中使用分子签名进行形态学分析,
促进进一步的功能研究和跨物种的比较与其他BICCN的协同努力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth M. C. Hillman其他文献
Elizabeth M. C. Hillman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth M. C. Hillman', 18)}}的其他基金
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
- 批准号:
10224732 - 财政年份:2017
- 资助金额:
$ 912.19万 - 项目类别:
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
- 批准号:
9983207 - 财政年份:2017
- 资助金额:
$ 912.19万 - 项目类别:
SCAPE microscopy for high-speed in-vivo volumetric microscopy in behaving organisms
SCAPE 显微镜用于行为生物体的高速体内体积显微镜
- 批准号:
9328178 - 财政年份:2015
- 资助金额:
$ 912.19万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8717740 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8320127 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8902277 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
ADVANCES IN OPTICS FOR BIOTECHNOLOGY, MEDICINE AND SURGERY CONFERENCE XII
第十二届生物技术、医学和外科光学会议的进展
- 批准号:
8062907 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8222238 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8514742 - 财政年份:2011
- 资助金额:
$ 912.19万 - 项目类别:
In-vivo optical imaging of neurovascular coupling and cerebral metabolism
神经血管耦合和脑代谢的体内光学成像
- 批准号:
7874281 - 财政年份:2008
- 资助金额:
$ 912.19万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 912.19万 - 项目类别:
Continuing Grant