Technology Development Unit
技术开发部
基本信息
- 批准号:10375270
- 负责人:
- 金额:$ 85.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBedsBehaviorBudgetsCaliberCancer BiologyCell NucleusCell physiologyCellsChemoresistanceChromatinChromatin ModelingChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsColorCommunitiesComputer ModelsCrowdingDNADataDevelopmentElectron MicroscopyEnsureEpigenetic ProcessEtiologyFamilyFeedbackGene ExpressionGenesGenetic TranscriptionGenome MappingsGenomicsGoalsHeterogeneityImageLabelLinkLocationLongterm Follow-upMalignant NeoplasmsMessenger RNAMethodsMicroscopyModalityModelingModificationMolecularMolecular AnalysisMolecular ComputationsMolecular ConformationMolecular TargetNucleosomesOpticsPatternPhenotypePhotonsPhysicsPolymersPopulationPreparationProcessQuantum DotsReactionRegulator GenesResearchResearch PersonnelResistanceResolutionSamplingScanningStructureTechniquesTechnologyTestingTherapeuticTimeTissuesTransmission Electron MicroscopyUniversitiesWorkanticancer researchbasecancer cellcancer stem cellcellular imagingchemotherapychromatin remodelinggenome sequencinggenomic locushistone modificationimaging platformlight intensitymicroscopic imagingmolecular dynamicsmolecular imagingmolecular modelingmolecular scalenanonanoassemblynanoimagingnanoscalenanosensorsnew technologynext generationnovelpredictive modelingresponserole modelsingle moleculespatiotemporalspectroscopic imagingstatisticsstemsuccesstargeted imagingtechnology developmenttheoriesthree dimensional structuretranscriptional reprogramming
项目摘要
Technology Development Unit: PROJECT SUMMARY
The overall goal of the U54 Northwestern University Center for Chromatin Nanoimaging in Cancer (NU-CCNIC)
is to develop and deploy a multi-scale chromatin nanoimaging platform together with molecular analyses and
computational modeling to characterize chromatin structure and transcriptional patterns associated with cancer
stem cells (CSCs) and the chemoresistance phenotype. We seek to fill three technology gaps in developing
such a nanoimaging platform. (1) The multi-scale challenge stems from the need to investigate how chromatin
regulates gene expression across a wide range of scales, from the diameter of DNA (~2 nm) to the size of
nucleosomes (~10 nm) to chromatin domains (~100 nm) to cell nuclei (~10 µm) and to a population of cells to
account for intercellular heterogeneity. (2) The multiplexed molecular imaging challenge arises due to a large
number of critical genes and molecular regulators that need to be co-registered with the 3D chromatin structural
data. And (3) The temporal dynamics challenge requires the ability to work across a wide range of time scales
to study short-term processes that may occur within minutes, such as chromatin remodeling, and long-term
processes that may progress over weeks, such as the emergence of chemoresistance in cancer cells. No single
technique satisfies all three requirements.
Our solution to address these three challenges is to organically correlate three families of technologies:
chromatin scanning transmission electron microscopy (ChromSTEM), spectroscopic single-molecule localization
microscopy (sSMLM), and partial wave spectroscopic (PWS) nanosensing microscopy. After registering these
technologies with 1 nm precision, they will collectively satisfy the multi-scale, multiplexing, and dynamics
requirements. We will achieve three objectives in TECH. (1) Develop next-generation sSMLM that enables, in
principle, unlimited multiplexing with the highest photon utilization and at 1 nm spatial precision. (2) Develop
correlative ChromSTEM-sSMLM-PWS imaging that enables cross-modality registration at 1 nm precision
assisted by novel quantum dot-based nano assembly fiduciary markers. And (3) Develop a multi-scale
molecular modeling platform to elucidate the etiological relationship between chromatin structure and
transcriptional reprogramming in CSCs imaged with the nanoimaging platform. The proposed technology
development is driven by the needs of the Research Test-Bed unit (RTB) to elucidate epigenetic and chromatin
drivers of transcriptional plasticity in CSC processes, in particular the development of adaptive resistance to
chemotherapy, and to explore the feasibility of reprogramming CSCs out of the stem-states as a therapeutic
strategy. Continuous feedback from RTB investigators will be integrated with the TECH platform's optimization,
enabling, in the longer-term, our U54 technologies to impact the broader cancer research community within and
beyond the Cellular Cancer Biology Imaging Research Network.
技术开发单位:项目概要
U54西北大学癌症染色质纳米成像中心(NU-CCNIC)的总体目标
旨在开发和部署多尺度染色质纳米成像平台以及分子分析和
用于表征与癌症相关的染色质结构和转录模式的计算模型
干细胞(CSC)和化疗耐药表型。我们寻求填补开发中的三个技术空白
这样的纳米成像平台。 (1) 多尺度挑战源于需要研究染色质如何
在广泛的尺度上调节基因表达,从 DNA 的直径 (~2 nm) 到 DNA 的大小
核小体 (~10 nm) 到染色质结构域 (~100 nm) 到细胞核 (~10 µm) 以及细胞群
解释细胞间的异质性。 (2) 多重分子成像的挑战是由于大量的
需要与 3D 染色质结构共同注册的关键基因和分子调节因子的数量
数据。 (3) 时间动态挑战需要能够在广泛的时间尺度上工作
研究可能在几分钟内发生的短期过程,例如染色质重塑,以及长期过程
可能会持续数周的过程,例如癌细胞中出现化疗耐药性。无单
技术满足所有三个要求。
我们应对这三个挑战的解决方案是将三个技术系列有机地关联起来:
染色质扫描透射电子显微镜 (ChromSTEM)、光谱单分子定位
显微镜(sSMLM)和部分波谱(PWS)纳米传感显微镜。注册完这些之后
1 nm精度的技术,将共同满足多尺度、多路复用和动态
要求。我们将实现科技领域的三个目标。 (1) 开发下一代 sSMLM,使
原理上,无限复用具有最高的光子利用率和 1 nm 的空间精度。 (2) 开发
相关 ChromSTEM-sSMLM-PWS 成像,可实现 1 nm 精度的跨模态配准
在新型基于量子点的纳米组装信托标记的协助下。 (3) 开发多尺度
分子建模平台阐明染色质结构与染色质之间的病因关系
使用纳米成像平台成像的 CSC 中的转录重编程。提议的技术
开发是由研究试验台单元 (RTB) 的需求驱动的,以阐明表观遗传和染色质
CSC 过程中转录可塑性的驱动因素,特别是适应性抗性的发展
化疗,并探索将 CSC 重编程出干状态作为治疗方法的可行性
战略。 RTB调查员的持续反馈将与TECH平台的优化相结合,
从长远来看,我们的 U54 技术能够影响更广泛的癌症研究界
超越细胞癌症生物学成像研究网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao F Zhang其他文献
Hao F Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao F Zhang', 18)}}的其他基金
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10494062 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10197971 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10043496 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10473769 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10652611 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10266060 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant














{{item.name}}会员




