Technology Development Unit
技术开发部
基本信息
- 批准号:10375270
- 负责人:
- 金额:$ 85.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBedsBehaviorBudgetsCaliberCancer BiologyCell NucleusCell physiologyCellsChemoresistanceChromatinChromatin ModelingChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsColorCommunitiesComputer ModelsCrowdingDNADataDevelopmentElectron MicroscopyEnsureEpigenetic ProcessEtiologyFamilyFeedbackGene ExpressionGenesGenetic TranscriptionGenome MappingsGenomicsGoalsHeterogeneityImageLabelLinkLocationLongterm Follow-upMalignant NeoplasmsMessenger RNAMethodsMicroscopyModalityModelingModificationMolecularMolecular AnalysisMolecular ComputationsMolecular ConformationMolecular TargetNucleosomesOpticsPatternPhenotypePhotonsPhysicsPolymersPopulationPreparationProcessQuantum DotsReactionRegulator GenesResearchResearch PersonnelResistanceResolutionSamplingScanningStructureTechniquesTechnologyTestingTherapeuticTimeTissuesTransmission Electron MicroscopyUniversitiesWorkanticancer researchbasecancer cellcancer stem cellcellular imagingchemotherapychromatin remodelinggenome sequencinggenomic locushistone modificationimaging platformlight intensitymicroscopic imagingmolecular dynamicsmolecular imagingmolecular modelingmolecular scalenanonanoassemblynanoimagingnanoscalenanosensorsnew technologynext generationnovelpredictive modelingresponserole modelsingle moleculespatiotemporalspectroscopic imagingstatisticsstemsuccesstargeted imagingtechnology developmenttheoriesthree dimensional structuretranscriptional reprogramming
项目摘要
Technology Development Unit: PROJECT SUMMARY
The overall goal of the U54 Northwestern University Center for Chromatin Nanoimaging in Cancer (NU-CCNIC)
is to develop and deploy a multi-scale chromatin nanoimaging platform together with molecular analyses and
computational modeling to characterize chromatin structure and transcriptional patterns associated with cancer
stem cells (CSCs) and the chemoresistance phenotype. We seek to fill three technology gaps in developing
such a nanoimaging platform. (1) The multi-scale challenge stems from the need to investigate how chromatin
regulates gene expression across a wide range of scales, from the diameter of DNA (~2 nm) to the size of
nucleosomes (~10 nm) to chromatin domains (~100 nm) to cell nuclei (~10 µm) and to a population of cells to
account for intercellular heterogeneity. (2) The multiplexed molecular imaging challenge arises due to a large
number of critical genes and molecular regulators that need to be co-registered with the 3D chromatin structural
data. And (3) The temporal dynamics challenge requires the ability to work across a wide range of time scales
to study short-term processes that may occur within minutes, such as chromatin remodeling, and long-term
processes that may progress over weeks, such as the emergence of chemoresistance in cancer cells. No single
technique satisfies all three requirements.
Our solution to address these three challenges is to organically correlate three families of technologies:
chromatin scanning transmission electron microscopy (ChromSTEM), spectroscopic single-molecule localization
microscopy (sSMLM), and partial wave spectroscopic (PWS) nanosensing microscopy. After registering these
technologies with 1 nm precision, they will collectively satisfy the multi-scale, multiplexing, and dynamics
requirements. We will achieve three objectives in TECH. (1) Develop next-generation sSMLM that enables, in
principle, unlimited multiplexing with the highest photon utilization and at 1 nm spatial precision. (2) Develop
correlative ChromSTEM-sSMLM-PWS imaging that enables cross-modality registration at 1 nm precision
assisted by novel quantum dot-based nano assembly fiduciary markers. And (3) Develop a multi-scale
molecular modeling platform to elucidate the etiological relationship between chromatin structure and
transcriptional reprogramming in CSCs imaged with the nanoimaging platform. The proposed technology
development is driven by the needs of the Research Test-Bed unit (RTB) to elucidate epigenetic and chromatin
drivers of transcriptional plasticity in CSC processes, in particular the development of adaptive resistance to
chemotherapy, and to explore the feasibility of reprogramming CSCs out of the stem-states as a therapeutic
strategy. Continuous feedback from RTB investigators will be integrated with the TECH platform's optimization,
enabling, in the longer-term, our U54 technologies to impact the broader cancer research community within and
beyond the Cellular Cancer Biology Imaging Research Network.
技术开发股:项目摘要
U 54西北大学癌症染色质纳米成像中心(NU-CCNIC)的总体目标
是开发和部署多尺度染色质纳米成像平台以及分子分析,
表征与癌症相关的染色质结构和转录模式的计算建模
干细胞(CSC)和化学抗性表型。我们致力于填补三项技术空白,
这样一个纳米成像平台。(1)多尺度的挑战源于需要研究染色质如何
调节基因表达的范围很广,从DNA的直径(~2 nm)到DNA的大小,
核小体(~10 nm)到染色质结构域(~100 nm)到细胞核(~10 µm)以及细胞群,
解释了细胞间的异质性。(2)多重分子成像的挑战是由于大的
需要与3D染色质结构共同注册的关键基因和分子调节因子的数量
数据时间动力学的挑战需要在广泛的时间尺度上工作的能力
研究可能在几分钟内发生的短期过程,如染色质重塑,以及长期
这些过程可能会持续数周,例如癌细胞中出现化疗耐药性。没有单一
技术满足这三个要求。
我们应对这三大挑战的解决方案是将三大技术家族有机地联系起来:
染色质扫描透射电子显微镜(ChromSTEM),光谱单分子定位
显微镜(sSMLM)和部分波光谱(PWS)纳米传感显微镜。在注册这些
技术与1纳米精度,他们将共同满足多尺度,多路复用,和动态
要求.我们将在技术上实现三个目标。(1)开发下一代sSMLM,
原理,无限多路复用,最高的光子利用率和1 nm的空间精度。(2)发展
相关ChromSTEM-sSMLM-PWS成像,可实现1 nm精度的跨模态配准
由基于新量子点的纳米组装可信标记辅助。(3)建立多尺度的
分子建模平台,以阐明染色质结构与
用纳米成像平台成像的CSC中的转录重编程。所提出的技术
研究试验台单位(RTB)的需要推动了这项研究的发展,以阐明表观遗传和染色质
CSC过程中转录可塑性的驱动因素,特别是适应性抗性的发展,
化疗,并探索将CSC重编程出干细胞状态作为治疗方法的可行性。
战略RTB调查人员的持续反馈将与TECH平台的优化相结合,
从长远来看,我们的U 54技术能够影响更广泛的癌症研究社区,
细胞癌症生物学成像研究网络之外的组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao F Zhang其他文献
Hao F Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao F Zhang', 18)}}的其他基金
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10494062 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10197971 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10043496 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10473769 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
TR&D Project 3: Photoacoustic Detection of Metal Fluxes at the Tissue Level
TR
- 批准号:
10652611 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
Intrinsic-contrast super-resolution imaging of DNA at 2-nm resolution
2 纳米分辨率的 DNA 本质对比度超分辨率成像
- 批准号:
10266060 - 财政年份:2020
- 资助金额:
$ 85.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 85.62万 - 项目类别:
Research Grant














{{item.name}}会员




