Chemical Strategies to Modulate Intercellular Bacterial Communication
调节细胞间细菌通讯的化学策略
基本信息
- 批准号:10397530
- 负责人:
- 金额:$ 36.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute DiseaseAddressAdvanced DevelopmentAreaAttenuatedAwarenessBacteriaBacterial InfectionsBacteriologyBehaviorBiochemicalBiochemistryBiologyCell CommunicationCell DensityCellsChemicalsChemistryChronic DiseaseClinicalCommunicationCommunitiesDevelopmentEnvironmentFoundationsGenomicsGoalsGram-Negative BacteriaHealthHumanIndividualInfectionInterceptLaboratoriesLeadLeadershipLigandsMaintenanceMethodsMolecularOrganismOutcomePathway interactionsPopulationPositioning AttributeProcessReceptor SignalingResearchResearch Project GrantsRoleShapesSignal PathwaySignal TransductionSignaling MoleculeSystemTestingTimeUnited States National Institutes of HealthVirulenceVisionWorkantimicrobialchemical synthesisinsightintercellular communicationmicrobialmicrobial communitymicrobiomemicrobiotanovel therapeutic interventionpathogenprogramsquorum sensingreceptorsmall moleculestructural biologytool
项目摘要
PROJECT SUMMARY/ABSTRACT
This MIRA proposal outlines an integrated research program at the interface of chemistry and biology focused
on cell-cell communication in bacteria, or “quorum sensing” (QS). QS has a major impact on human health,
with some of the most common pathogens utilizing this sensing mechanism to regulate virulence—i.e., the
ability to initiate infection—once sufficient cells have amassed to overwhelm a host. Understanding the
molecular mechanisms of QS, its role in mixed microbial communities, and its impact on both acute and
chronic disease remain pressing and unaddressed challenges in the field. For example, our understanding of
how QS signaling molecules interact with their target protein receptors to activate or inhibit QS pathways is
limited to four species in Gram-negative bacteria. Further, with an increasing awareness of the importance of
microbial communities (i.e., our “microbiomes”) to human health, it is astonishing how little we know about
the role of chemical signaling between these organisms in the maintenance (or disruption) of healthy microbial
consortia. As bacteria use simple chemical signals to regulate QS, synthetic chemists and chemical biologists
are well positioned to address these problems and other related challenges at the molecular level. With support
from the NIH over the past decade, the PI has advanced the development of synthetic ligands that modulate QS
signaling systems in Gram-negative bacteria and has shown that these ligands can strongly attenuate QS-
controlled behaviors in many pathogens. This past work situates her ideally to lead this research project.
The overall vision for this MIRA project is to build on the PI's 12-year foundation of results and leadership
in this area and apply a chemical approach to expand the understanding of QS across multiple scales—from
individual QS signal:receptor interactions to signaling in a single species to signaling within mixed bacterial
populations to interactions of the community with a host. We will achieve this vision through the pursuit of
three broad Goals: (1) the development of new small molecules capable of strongly modulating QS in Gram-
negative bacteria with high potencies, stabilities, and defined modes of action; (2) the application of these
molecules and new chemical strategies to delineate the biochemical mechanisms of QS; and (3)
characterization of the roles of QS in mixed microbial environments relevant to human health. These three
Goals will be pursued through an integration of chemical synthesis, chemical biology, bacteriology,
biochemistry, structural biology, and genomics. Studies will be performed in the PI's laboratory at the UW–
Madison and with a team of committed collaborators with expertise in QS and methods critical to this project.
The overall outcome of this project will be a drastically increased and rigorously tested understanding of QS in
bacteria and its role in biologically significant environments, and a suite of new and freely accessible research
tools for the QS field. Our findings will shape the development of new methods to treat bacterial disease and
will directly impact human health.
项目总结/摘要
这MIRA建议概述了一个综合的研究计划,在化学和生物学的接口集中
细菌中细胞间的通讯,或称“群体感应”(QS)。QS对人类健康有重大影响,
一些最常见的病原体利用这种传感机制来调节毒力-即,的
一旦有足够的细胞聚集起来压倒宿主,就有能力开始感染。了解
QS的分子机制,它在混合微生物群落中的作用,以及它对急性和
慢性病仍然是该领域尚未解决的紧迫挑战。例如,我们对
QS信号分子如何与其靶蛋白受体相互作用以激活或抑制QS途径,
仅限于革兰氏阴性菌中的四种。此外,随着人们越来越认识到
微生物群落(即,我们的“微生物组”)对人类健康的影响,令人惊讶的是,我们对
这些生物体之间的化学信号在维持(或破坏)健康微生物中的作用
财团。由于细菌使用简单的化学信号来调节QS,合成化学家和化学生物学家
在分子水平上能够很好地解决这些问题和其他相关挑战。支持下
在过去的十年里,PI已经推进了调节QS的合成配体的开发,
在革兰氏阴性菌中的信号系统,并已表明这些配体可以强烈减弱QS-
控制许多病原体的行为。过去的工作使她成为领导这项研究项目的理想人选。
这个MIRA项目的总体愿景是建立在PI 12年的成果和领导基础上
在这一领域,并应用化学方法,以扩大跨多个尺度的QS的理解-从
单个QS信号:受体相互作用到单个物种中的信号到混合细菌内的信号
群体与宿主的相互作用。我们将通过追求以下目标来实现这一愿景:
三个广泛的目标:(1)开发能够强烈调节革兰氏中QS的新的小分子,
具有高效力、稳定性和确定的作用模式的阴性细菌;(2)这些的应用
分子和新的化学策略,以描绘QS的生化机制;和(3)
QS在与人类健康相关的混合微生物环境中的作用的表征。这三
将通过整合化学合成、化学生物学、细菌学,
生物化学、结构生物学和基因组学。研究将在UW的PI实验室进行-
麦迪逊和一个团队的承诺合作者的专业知识,在质量和方法的关键,这个项目。
该项目的总体成果将是对QS的理解得到大幅提高和严格测试,
细菌及其在生物重要环境中的作用,以及一套新的和免费获得的研究
QS领域的工具。我们的发现将有助于开发治疗细菌性疾病的新方法,
将直接影响人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen E. Blackwell其他文献
Characterization of natural product inhibitors of quorum sensing reveals competitive inhibition of emPseudomonas aeruginosa/em RhlR by emortho/em-vanillin
群体感应天然产物抑制剂的表征揭示了邻香草醛对铜绿假单胞菌 RhlR 的竞争性抑制作用
- DOI:
10.1128/spectrum.00681-24 - 发表时间:
2024-08-05 - 期刊:
- 影响因子:3.800
- 作者:
Kathryn E. Woods;Sana Akhter;Blanca Rodriguez;Kade A. Townsend;Nathan Smith;Ben Smith;Alice Wambua;Vaughn Craddock;Rhea G. Abisado-Duque;Emma E. Santa;Daniel E. Manson;Berl R. Oakley;Lynn E. Hancock;Yinglong Miao;Helen E. Blackwell;Josephine R. Chandler - 通讯作者:
Josephine R. Chandler
Potent pan-group quorum sensing inhibitors in emStaphylococcus aureus/em revealed by N-terminal tailoring of peptidomimetics
通过拟肽的 N 端修饰揭示金黄色葡萄球菌中有效的泛群群体感应抑制剂
- DOI:
10.1039/d2cc05733f - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Ke Zhao;Joseph K. Vasquez;Helen E. Blackwell - 通讯作者:
Helen E. Blackwell
Helen E. Blackwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen E. Blackwell', 18)}}的其他基金
Strategies to Block Skin Wound Infection by Intercepting Bacterial Cell-to-Cell Signaling
通过拦截细菌细胞间信号传导来阻止皮肤伤口感染的策略
- 批准号:
10667239 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Chemical Strategies to Modulate Intercellular Bacterial Communication
调节细胞间细菌通讯的化学策略
- 批准号:
10598009 - 财政年份:2019
- 资助金额:
$ 36.88万 - 项目类别:
Chemical Strategies to Modulate Intercellular Bacterial Communication
调节细胞间细菌通讯的化学策略
- 批准号:
9908123 - 财政年份:2019
- 资助金额:
$ 36.88万 - 项目类别:
Chemical Strategies to Modulate Intercellular Bacterial Communication
调节细胞间细菌通讯的化学策略
- 批准号:
10798787 - 财政年份:2019
- 资助金额:
$ 36.88万 - 项目类别:
TRAINING IN THE USE OF BRUKER AND VARIAN SPECTROMETERS AND NMR
布鲁克和瓦里安光谱仪和核磁共振的使用培训
- 批准号:
7598702 - 财政年份:2007
- 资助金额:
$ 36.88万 - 项目类别:
Synthetic Ligands for Modulating Bacterial Communication
用于调节细菌通讯的合成配体
- 批准号:
7742173 - 财政年份:2006
- 资助金额:
$ 36.88万 - 项目类别:
Synthetic Ligands for Modulating Bacterial Communication
用于调节细菌通讯的合成配体
- 批准号:
7037720 - 财政年份:2006
- 资助金额:
$ 36.88万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.88万 - 项目类别:
Research Grant














{{item.name}}会员




