The Center for Innovation in Intensive Longitudinal Studies (CIILS)
强化纵向研究创新中心(CIILS)
基本信息
- 批准号:9788202
- 负责人:
- 金额:$ 46.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative PersonnelAlgorithmsBehaviorBig DataCollaborationsCollectionCommunicationCommunitiesConsultationsDataData AnalysesData AnalyticsData CollectionData SecurityDatabasesDecision MakingDevelopmentDevicesFutureGeneral PopulationGoalsHealthHealth SciencesHealth behaviorHealth behavior changeHealthcareHuman ResourcesIndividualInfrastructureInterventionLeadLinkLongitudinal StudiesMachine LearningManualsMeasuresMethodologyMethodsNeurobiologyPennsylvaniaPersonsPositioning AttributePreventive InterventionPrivacyProcessProductionProgress ReportsProtocols documentationPublicationsRecordsRegulationReportingResearchResearch ActivityResearch DesignResourcesScienceScientistSecurityShapesSiteSocial WorkSourceStructureTechnical ExpertiseTechniquesTestingTimeTrainingTranslationsUnited States National Institutes of HealthUniversitiesUpdateVisualization softwareWorkplacecontrol theorydata managementdata portaldata sharingdata visualizationdata warehousedesigndigitaldynamic systemexperiencehuman subjectinnovationinstrumentationmembermultidisciplinarynoveloperationorganizational structurepreservationsocialsuccesstheoriestherapy designtool
项目摘要
PROJECT SUMMARY
Significance. The Intensive Longitudinal Behavior Network (ILHBN) provides an unprecedented opportunity to
advance and shape the future landscape of health behavior science and related intervention practice. The
proposed Research Coordinating Center, the Center for Innovation in Intensive Longitudinal Studies (CIILS),
housed at the Pennsylvania State University (Penn State), will bring together an interdisciplinary team to
synergistically support and coordinate research activities across a diverse portfolio of anticipated U01 projects
to accomplish the Network’s larger goal of sustained innovation in the use of intensive longitudinal data (ILD)
and associated methods in the study of health behavior change, and in informing prevention and intervention
designs.
Innovation. The proposed organizational structure of the ILHBN as a small-world network is motivated by our
team’s collective decades of experience with multidisciplinary and multi-site collaborations, and is designed to
facilitate information flow, collective decision making, and coordination of goals and effort within the ILHBN.
Approach. CIILS consists of five Cores with expertise in management of multi-site projects and coordinating
centers (Administrative Core); development of novel methods for analysis of ILD (Methods Core); ILD
collection, harmonization, sharing, security, as well as collection of digital footprints (Data Core); ILD design,
harmonization and instrumentation support (Design Core); and integration of health behavior theories,
translation, and implementation of within-person health preventions/interventions (Theory Core). Key personnel
with rich and complementary expertise are supported by a roster of advisory Co-Is at Penn State and
distributed consultants who are leaders and innovators in their respective fields. Institutional support and
contributed staff time by Penn State provide robust infrastructure, expertise, and “boots on the ground” to
support the operation and coordination activities of ILHBN; and a wealth of additional resources to elevate and
broaden the collective impacts of the Network.
项目摘要
意义密集纵向行为网络(ILHBN)提供了一个前所未有的机会,
推进和塑造健康行为科学和相关干预实践的未来景观。的
拟议的研究协调中心,密集纵向研究创新中心(CILLS),
位于宾夕法尼亚州立大学(宾夕法尼亚州立大学),将汇集一个跨学科的团队,
协同支持和协调预期U 01项目的各种组合的研究活动
实现该网络在使用密集纵向数据(ILD)方面持续创新的更大目标
在研究健康行为变化和提供预防和干预信息方面的相关方法
的设计.
创新ILHBN作为一个小世界网络的拟议组织结构的动机是我们的
团队在多学科和多地点合作方面的集体数十年经验,旨在
促进信息流动,集体决策,以及ILHBN内目标和努力的协调。
Approach. CILLS由五个核心组成,具有管理多站点项目和协调
中心(管理核心); ILD分析新方法的开发(核心方法); ILD
收集、协调、共享、安全以及数字足迹的收集(数据核心); ILD设计,
协调和仪器支持(设计核心);以及健康行为理论的整合,
翻译和实施人内健康预防/干预(理论核心)。关键人员
拥有丰富和互补的专业知识,由宾夕法尼亚州立大学的顾问委员会提供支持,
他们是各自领域的领导者和创新者。机构支助和
宾夕法尼亚州立大学贡献的工作人员时间提供了强大的基础设施,专业知识和“地面上的靴子”,
支持ILHBN的运作和协调活动;以及丰富的额外资源,以提高和
扩大网络的集体影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sy-Miin Chow其他文献
Sy-Miin Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sy-Miin Chow', 18)}}的其他基金
The Center for Innovation in Intensive Longitudinal Studies (CIILS)
强化纵向研究创新中心(CIILS)
- 批准号:
10561102 - 财政年份:2022
- 资助金额:
$ 46.55万 - 项目类别:
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 46.55万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 46.55万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 46.55万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 46.55万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 46.55万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 46.55万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 46.55万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 46.55万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 46.55万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 46.55万 - 项目类别:
Collaborative Research and Development Grants