Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing

用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具

基本信息

  • 批准号:
    9788347
  • 负责人:
  • 金额:
    $ 34.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-19 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract Data preprocessing is critical for the success of any MS-based untargeted metabolomics study, as it is the first informatics step for making sense of the data. Despite the enormous contributions that existing software tools have made to metabolomics, errors in compound identification and relative quantitation are still plaguing the field. This issue is becoming more serious as the sensitivity of LC/MS and GC/MS platforms is constantly increasing. Preprocessing involves peak detection, peak grouping and annotation for LC/MS or spectral deconvolution for GC/MS data, and peak alignment. Existing software tools invariably yield an immense number of false positive and false negative peaks, produce inaccurate peak groups, mis-align detected peaks, and extract inaccurate information of relative metabolite quantitation. These errors can translate downstream into spurious or missing compound identifications and cause misleading interpretations of the metabolome. Furthermore, users need to specify a large number of parameters for existing software tools to work. Unfortunately, general users usually do not understand how to optimize these parameters, and maximizing one aspect (e.g., sensitivity) often has deleterious effects on another (e.g., specificity). We will address these challenges by developing more accurate algorithms for improving the rigor and reproducibility of data preprocessing. The proposed algorithms will be implemented in Java and integrated with the widely-used MZmine 2, making the software cross-platform and user-friendly with rich visualization capabilities. In addition, the implementation will be optimized for memory efficiency and computing speed allowing large-scale data preprocessing. Extensive testing of the software will be conducted in close collaborations with metabolomics core facilities and users around the world.
项目总结/摘要 数据预处理对于任何基于MS的非靶向代谢组学研究的成功至关重要,因为它是第一个 信息学的一步,使数据的意义。尽管现有的软件工具 尽管对代谢组学的研究取得了很大进展,但化合物鉴定和相对定量的错误仍然困扰着该领域。 随着LC/MS和GC/MS平台的灵敏度不断提高,这个问题变得越来越严重。 预处理涉及LC/MS的峰检测、峰分组和注释或LC/MS的光谱去卷积。 GC/MS数据和峰对齐。现有的软件工具总是产生大量的假阳性 和假阴性峰,产生不准确的峰组,未对齐检测到的峰, 相对代谢物定量信息。这些错误可能会在下游转化为虚假或丢失 化合物鉴定,并导致代谢组学的误导性解释。此外,用户需要 为现有软件工具的工作指定大量参数。一般用户通常 不了解如何优化这些参数,并最大化一个方面(例如,敏感性)通常具有 对另一个的有害影响(例如,特异性)。我们将通过开发更准确的 用于提高数据预处理的严谨性和可重复性的算法。所提出的算法将是 用Java实现,并与广泛使用的MZmine 2集成,使软件跨平台, 具有丰富的可视化功能。此外,该实现将针对内存进行优化 效率和计算速度允许大规模数据预处理。对软件的广泛测试将 与代谢组学核心设施和世界各地的用户密切合作进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiuxia Du其他文献

Xiuxia Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiuxia Du', 18)}}的其他基金

Human Health Exposure Analysis Resource Core: Untargeted Analysis
人类健康暴露分析资源核心:非目标分析
  • 批准号:
    10200812
  • 财政年份:
    2019
  • 资助金额:
    $ 34.08万
  • 项目类别:
Human Health Exposure Analysis Resource Core: Untargeted Analysis
人类健康暴露分析资源核心:非目标分析
  • 批准号:
    9814480
  • 财政年份:
    2019
  • 资助金额:
    $ 34.08万
  • 项目类别:
Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing
用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具
  • 批准号:
    10251409
  • 财政年份:
    2018
  • 资助金额:
    $ 34.08万
  • 项目类别:
Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing
用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具
  • 批准号:
    10005903
  • 财政年份:
    2018
  • 资助金额:
    $ 34.08万
  • 项目类别:
Parameter-free Peak Detection Algorithm for Reducing False Positive/Negative Compound Identification from Raw Mass Spectrometry Metabolomics Data.
无参数峰检测算法,用于减少原始质谱代谢组学数据中的假阳性/阴性化合物鉴定。
  • 批准号:
    9433358
  • 财政年份:
    2017
  • 资助金额:
    $ 34.08万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了