Parameter-free Peak Detection Algorithm for Reducing False Positive/Negative Compound Identification from Raw Mass Spectrometry Metabolomics Data.
无参数峰检测算法,用于减少原始质谱代谢组学数据中的假阳性/阴性化合物鉴定。
基本信息
- 批准号:9433358
- 负责人:
- 金额:$ 13.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-19 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithm DesignAlgorithmsBiologicalBypassChromatographyCollaborationsCommunitiesComputer softwareCoupledDataData FilesDetectionDevelopmentDimensionsDiseaseError SourcesEvaluationGas ChromatographyImageryIonsJavaLaboratoriesLeadLiquid substanceManualsMass Spectrum AnalysisMeasurementMeasuresMetabolismMorphologic artifactsNorth CarolinaProcessPythonsReference StandardsResearchResearch PersonnelResolutionSamplingScientistSerumSpecific qualifier valueSpecificityTherapeuticTimeTranslatingUniversitiesVendorWaterWorkbasebiomarker discoveryclinical biomarkerscomputerized data processingcostdesignexperimental studyflexibilityimprovedmetabolomicsmetabolomics resourcenovelopen sourceprototype
项目摘要
Project Summary / Abstract
Parameter-free Peak Detection Algorithm for Reducing False Positive/Negative Compound Identification from
Raw Mass Spectrometry Metabolomics Data
Mass spectrometry (MS) coupled to liquid or gas chromatography (LC or GC) have become indispensable analyt-
ical platforms for untargeted metabolomics. With sensitivity, chromatographic resolution, and mass measurement
accuracy continuously improving, more and more analytes are now detectable, and this has enormous potential to
lead to great strides in our understanding of metabolism. The first step in the preprocessing of raw LC- and GC-MS
metabolomics data is the detection and extraction of peaks that represent ions. However, existing peak detection
algorithms invariably yield an immense number of false positive and false negative peaks. These incorrect peaks
can translate downstream into spurious or missing compound identifications. Furthermore, a large number of
parameters must be specified for these algorithms to work. Unfortunately, general users often do not understand
how to optimize these parameters, and maximizing one aspect (e.g., sensitivity) often has deleterious effects
on another (e.g., specificity). To address the challenges, we propose a paradigm shift in the detection of peaks
by simultaneously considering the three dimension of an ion’s information. This will significantly increase the
accuracy of peak detection compared to what can be achieved by existing algorithms that carry out peak detection
by processing data in three separate 2D planes. The results of our proposed research will benefit metabolomics
research in multiple ways. (1) The more accurate algorithm will eliminate or reduce manual checking of results to
a minimum. (2) With the parameter-free design, researchers will not have to go through many rounds of trial-and-
error to determine the best compromise for a set of processing parameters. (3) The more accurate algorithm will
provide greater confidence in the detection of truly unknown compounds and allow prioritization of candidates for
more detailed and costly structural analysis. (4) The more accurate algorithm will benefit biomarker discovery by
increasing the accuracy of quantitative metabolite information extracted from the raw metabolomics data.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuxia Du其他文献
Xiuxia Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuxia Du', 18)}}的其他基金
Human Health Exposure Analysis Resource Core: Untargeted Analysis
人类健康暴露分析资源核心:非目标分析
- 批准号:
10200812 - 财政年份:2019
- 资助金额:
$ 13.67万 - 项目类别:
Human Health Exposure Analysis Resource Core: Untargeted Analysis
人类健康暴露分析资源核心:非目标分析
- 批准号:
9814480 - 财政年份:2019
- 资助金额:
$ 13.67万 - 项目类别:
Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing
用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具
- 批准号:
9788347 - 财政年份:2018
- 资助金额:
$ 13.67万 - 项目类别:
Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing
用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具
- 批准号:
10251409 - 财政年份:2018
- 资助金额:
$ 13.67万 - 项目类别:
Cross-Platform and Graphical Software Tool for Adaptive LC/MS and GC/MS Metabolomics Data Preprocessing
用于自适应 LC/MS 和 GC/MS 代谢组学数据预处理的跨平台和图形化软件工具
- 批准号:
10005903 - 财政年份:2018
- 资助金额:
$ 13.67万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 13.67万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 13.67万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 13.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 13.67万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral