Quantitative phase imaging andcomputational specificity (Popescu)
定量相位成像和计算特异性(Popescu)
基本信息
- 批准号:10705170
- 负责人:
- 金额:$ 18.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-06-20
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressBiophotonicsBrainCalibrationCancer PrognosisCell CountCell CycleCell TherapyCellsCellular AssayCellular StructuresChemicalsClassificationCollaborationsCollagenCollagen FiberComputer softwareDataDetectionDiffusionEmbryoEndoscopesFiberGeometryHistopathologyHolographyHumanImageImaging TechniquesImaging technologyIn VitroLabelLasersLengthLightMeasurementMethodsMicroscopeMicroscopyMicrospheresModelingMorphologyMusNeuronsOpticsOrganoidsPathologyPenetrationPhasePhysicsProceduresResolutionRetrievalSamplingScanningSchemeSignal TransductionSkinSlideSpecificitySpeedStainsStructureSubcellular structureSurfaceSystemTechniquesTestingThickThree-Dimensional ImagingTimeTissue imagingTissuesTranslatingViralartificial intelligence algorithmcancer diagnosiscellular imagingclinical applicationcomputerized toolsdeep learningdesignimprovedin vivoinstrumentlight scatteringmetermillisecondnanometernanoscaleoperationprogramsreconstructionsubmicrontemporal measurementtomographytoolviral detectionvirtual
项目摘要
SUMMARY
TRD 1 aims to translate QPI technology to in-vivo and deep-tissue imaging with specific markers developed via
computation and deep-learning. Quantitative phase imaging (QPI) is emerging as a powerful, label-free approach
to imaging cells and tissues, especially because it combines qualities found in microscopy, holography, and light
scattering techniques: nanoscale sensitivity to morphology and dynamics, 2D, 3D, and 4D (i.e., time-resolved
tomography) nondestructive imaging of completely transparent structures, and quantitative signals based on
intrinsic contrast. These capabilities have allowed QPI to be successfully applied in numerous biomedical
applications, including cancer diagnosis in histopathology and cell therapy. Recently, we have expanded QPI for
the first time to thick structures, such as embryos and spheroids, by developing gradient light interference
microcopy (GLIM, the 2018 Microscopy Today Method of the Year). However, despite enormous progress,
current QPI techniques are virtually absent from in-vivo and POC applications.
We will advance the QPI technology to a confocal reflection geometry, thus, boosting the out of focus light
rejection and improving high-resolution 3D imaging of thick tissue structures. Specifically, we will target first
imaging the 3D orientation of skin collagen in-vivo. We will develop a label-free endoscopic system (eGLIM)
capable of sub-micron spatial and millisecond temporal resolution, while maintaining nanometer pathlength
sensitivity. We will advance phase imaging with computational specificity (PICS) to real-time operation on in-vivo
data from CPT (Aim 1) and eGLIM (Aim 2). Specifically, in close collaboration with TRD 3, we will develop
computational tools for segmenting cellular and subcellular structures in spheroids, identifying collagen fibers
from in-vivo CPT skin data, developing rapid label-free viral testing, nondestructive live/dead cell assays, label-
free cell cycle phase identification.
总结
TRD 1旨在将QPI技术转化为体内和深层组织成像,通过开发特定标记物,
计算和深度学习。定量相位成像(QPI)是一种功能强大的无标记方法
对细胞和组织进行成像,特别是因为它结合了显微镜,全息术和光的特性
散射技术:对形态和动力学的纳米级灵敏度,2D,3D,和4D(即,时间分辨
完全透明结构的非破坏性成像,以及基于
内在对比。这些能力使QPI成功应用于许多生物医学领域。
应用,包括组织病理学和细胞治疗中的癌症诊断。最近,我们扩大了QPI,
第一次对厚的结构,如胚胎和球体,通过发展梯度光干涉
显微镜(GLIM,2018年显微镜今日年度方法)。然而,尽管取得了巨大进展,
目前的QPI技术实际上没有用于体内和POC应用。
我们将把QPI技术推进到共焦反射几何结构,从而提高焦外光的强度。
拒绝和改善厚组织结构的高分辨率3D成像。具体来说,我们将首先针对
对体内皮肤胶原蛋白的3D取向进行成像。我们将开发一种无标签内窥镜系统(eGLIM)
具有亚微米空间和毫秒时间分辨率,同时保持纳米路径长度
灵敏度我们将推进相位成像与计算特异性(PICS)的实时操作在体内
数据来自CPT(目标1)和eGLIM(目标2)。具体而言,我们将与TRD 3密切合作,
计算工具,用于分割球体中的细胞和亚细胞结构,识别胶原纤维
从体内CPT皮肤数据,开发快速无标记病毒检测,无损活/死细胞检测,标记,
游离细胞周期时相鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rohit Bhargava其他文献
Rohit Bhargava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rohit Bhargava', 18)}}的其他基金
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
- 批准号:
10426352 - 财政年份:2021
- 资助金额:
$ 18.03万 - 项目类别:
Instrument development for vibrational circular dichroism imaging
振动圆二色性成像仪器的开发
- 批准号:
10650769 - 财政年份:2021
- 资助金额:
$ 18.03万 - 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
- 批准号:
10661561 - 财政年份:2021
- 资助金额:
$ 18.03万 - 项目类别:
Instrument development for vibrational circular dichroism imaging
振动圆二色性成像仪器的开发
- 批准号:
10437817 - 财政年份:2021
- 资助金额:
$ 18.03万 - 项目类别:
Real time colon histopathology by infrared spectroscopic imaging
通过红外光谱成像进行实时结肠组织病理学
- 批准号:
10318008 - 财政年份:2021
- 资助金额:
$ 18.03万 - 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
- 批准号:
10207105 - 财政年份:2016
- 资助金额:
$ 18.03万 - 项目类别:
Tissue microenvironment (TiMe) training program
组织微环境(TiMe)培训计划
- 批准号:
9458180 - 财政年份:2016
- 资助金额:
$ 18.03万 - 项目类别:
Tissue microenvironment (TIMe) training program
组织微环境(TIMe)培训计划
- 批准号:
10649737 - 财政年份:2016
- 资助金额:
$ 18.03万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 18.03万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 18.03万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 18.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 18.03万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 18.03万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 18.03万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 18.03万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 18.03万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 18.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)