Integrative characterization of cell state via modeling of multi-omics data
通过多组学数据建模对细胞状态进行综合表征
基本信息
- 批准号:10705133
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBiological AssayCellsChromatinComplexComputer ModelsComputing MethodologiesDataDetectionDevelopmentDiseaseDisease OutcomeGenomicsHeterogeneityIndividualLinkMeasurementMeasuresMethodologyMethodsModalityModelingMultiomic DataOrganPopulationProcessProteomeResearch PersonnelResolutionSurfaceTechnologyTimeTissuesVariantcomputational suiteepigenomeepigenomicsinsightmachine learning modelmethylomemultimodalitymultiple omicsnovelprotein biomarkerssuccesstranscription factortranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Advent of singe-cell genomics has enhanced our ability to study heterogeneous cell populations (1) to track the
time course of cellular differentiation and identify drivers, (2) to identify potentially novel cell states/types in an
unsupervised manner, and (3) to identify cell populations that are linked disease outcomes. More recently, we
and others have developed single-cell multiomics technologies that enable measuring of multiple modalities of
a single cell at the same time, including the transcriptome, the methylome, the epigenome and surface marker
proteins. These assays offer unprecedented opportunities to study the state of single cells more
comprehensively; by developing the necessary computational methods for these assays, we can obtain more
accurate and deeper characterization of cell states and obtain mechanistic insights into the relationships
between state of chromatin, the proteome and the transcriptomic states within an individual cell. However,
there is a dramatic lack of interpretable computational methods to study multiomics data. To address this gap
and propel the field forward, we are proposing to develop computational methodologies that will (1)
characterize the state of a single cell in a multiomic setting in an unsupervised manner, (2) characterize the
regulatory landscape of single-cells by identifying transcription factor binding activity and (3) identify multiple
structural variations at single-cells.
First, we will develop interpretable topic-modeling based methods for characterizing single cells based on
multiomic readout. Building on our past success with topic models to accurately cluster and characterize
single-cell populations, we will develop novel topic modeling approaches for multiomics assays in order to
achieve a much deeper profiling of the state of a cell, which will lead to potential insights into the links between
multiple modalities measured by a multiomic assay, such as transcriptomic and epigenomic state. Second, we
propose to develop a single-cell transcription factor footprinting (TF) methods. Computational detection of TF
footprints can identify the landscape of active transcription factors that determine important drivers of cell state
and identity. We will develop the methodology to identify active transcription factors at an unprecedented
single-cell resolution and to investigate links between the methylome and TF binding. Lastly, we will develop
methods to identify different types of structural variations at single cell resolution by leveraging novel multiomic
assays developed by my collaborators. This methodology will enhance our ability to study the heterogeneity of
structural variations in different cell populations. Overall, the proposed suite of computational methodologies
will allow a broad audience of researchers who generate and analyze multiomic data to annotate the multi-
modally measured cell states in heterogeneous cell populations in a deep and unprecedented manner at
single-cell resolution. Furthermore, our interpretable methods will yield testable hypotheses to better
understand the cell state.
项目摘要
单细胞基因组学的出现增强了我们研究异质细胞群的能力(1),
(2)在细胞分化的时间过程中识别潜在的新细胞状态/类型,
无监督的方式,和(3)识别与疾病结果相关的细胞群。最近,我们
和其他人已经开发了单细胞多组学技术,使得能够测量多种形式的
包括转录组、甲基化组、表观基因组和表面标记
proteins.这些检测方法为更多地研究单细胞状态提供了前所未有的机会。
全面;通过为这些测定开发必要的计算方法,我们可以获得更多
细胞状态的准确和更深入的表征,并获得对关系的机械见解
染色质状态、蛋白质组和转录组状态之间的关系。然而,在这方面,
严重缺乏可解释的计算方法来研究多组学数据。为了弥补这一差距
并推动该领域向前发展,我们建议开发计算方法,将(1)
以无监督的方式表征多组设置中单个细胞的状态,(2)表征
通过鉴定转录因子结合活性来确定单细胞的调控景观,以及(3)鉴定多个
单细胞的结构变化。
首先,我们将开发可解释的基于主题建模的方法,用于基于
多组读出基于我们过去成功的主题模型,
单细胞群体,我们将开发新的多组学分析的主题建模方法,
实现对细胞状态的更深入剖析,这将导致对细胞之间联系的潜在洞察。
通过多组学测定测量的多种模式,例如转录组学和表观基因组学状态。二是
提出发展单细胞转录因子足迹法(TF)。TF的计算检测
足迹可以识别决定细胞状态的重要驱动因素的活性转录因子的景观
和身份。我们将发展一种方法,以前所未有的速度鉴定活性转录因子。
单细胞分辨率,并研究甲基化和TF结合之间的联系。最后,我们将开发
通过利用新的多组学方法以单细胞分辨率鉴定不同类型的结构变异的方法
由我的合作者开发的检测方法。这种方法将提高我们研究的异质性,
不同细胞群体的结构差异。总的来说,所提出的一套计算方法
将允许广泛的研究人员谁产生和分析多组学数据注释的多-
在异质细胞群体中以深刻和前所未有的方式模态测量细胞状态,
单细胞分辨率。此外,我们的可解释方法将产生可检验的假设,以更好地
了解细胞状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galip Gurkan Yardimci其他文献
Differentiation State Plasticity As a Mechanism of BCL2 Inhibitor Resistance in Acute Myeloid Leukemia
- DOI:
10.1182/blood-2023-175057 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
William M Yashar;Mitsuhiro Tsuchiya;Akram Taherinasab;Sara Evans-Dutson;Brendan O'Connell;Theresa Lusardi;Nicole Szczepanksi;Galip Gurkan Yardimci;Andrew C Adey;Julia E Maxson;Theodore P Braun - 通讯作者:
Theodore P Braun
Galip Gurkan Yardimci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galip Gurkan Yardimci', 18)}}的其他基金
Integrative characterization of cell state via modeling of multi-omics data
通过多组学数据建模对细胞状态进行综合表征
- 批准号:
10501946 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Projects