Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
基本信息
- 批准号:10705569
- 负责人:
- 金额:$ 138.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAwardBase PairingBiologyChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCodeDefectDementiaDiseaseEngineeringEnsureFoundationsFragile X SyndromeFundingGene SilencingGenesGenetic PolymorphismHealthHumanIn SituIntronsInvestmentsMediatingMethodsMicrosatellite RepeatsModalityNeuromuscular DiseasesOligonucleotidesOpen Reading FramesPathologyPathway interactionsPatientsPharmaceutical PreparationsRNARNA DecayResearchSiteStructureTherapeuticTissuesToxinTranscriptUntranslated RegionsWorkdesigndrug actiondrug synthesisflexibilityhuman diseasein vivoinnovationmolecular recognitionnovelnucleasepreclinical developmentprogramsrecruitsmall moleculetool
项目摘要
PROJECT SUMMARY: An extraordinarily challenging problem is to develop general methods to target defective
or malfunctioning RNAs that cause disease selectively. Current therapeutic strategies to target RNAs are based
on specific sequence recognition by oligonucleotides. However, many human disorders are caused by highly
structured RNAs not readily targetable by conventional base pairing, in particular RNA repeat expansions that
cause or contribute to >30 incurable neuromuscular diseases and genetically defined dementia. Thus, allele-
specific ASOs modalities for these microsatellite disorders have been developed by targeting polymorphisms
outside of the repeating sequence. The consequences of this approach are that only patients with the
polymorphisms benefit from treatment and that an ASO has to be developed for each disease, even if caused
by the same repeating sequence. If the toxin in these diseases, the expanded repeat, could be targeted
selectively with a structure-specific small molecule, then a single modality could be a therapeutic or chemical
probe for multiple diseases and for all patients.
Over the past 14 years, we have shown that RNA structures can be targeted selectively with small molecules
in situ and in vivo, more selectively than oligonucleotides. Indeed, we have designed compounds against many
RNA repeat expansions that selectively recognize the target’s structure and rescue disease-associated
pathobiology in situ and in vivo. Further, these chemical probes have elucidated new mechanisms of disease,
including a previously unknown RNA-mediated transcriptional silencing pathway that operates in fragile X
syndrome. These studies, along with our innovative strategies to synthesize drugs at the site of disease and to
engineer small molecules with novel activities, including antisense- or CRISPR-like modes of action, lay the
foundation for our proposed research program.
Herein, we propose a comprehensive strategy to study the molecular recognition of RNA repeat expansions
by small molecules in situ and in vivo, enabling the establishment of new chemical biology frameworks to target
RNA using small molecules and the development of preclinical candidates. Our studies span many types of
repeat expansions, differing in both sequence and gene contexts (intron, untranslated region, or open reading
frame). We have devised innovative strategies to: (i) exploit the structures of RNA repeats to coax the disease-
causing RNA to synthesize its own drug; (ii) interface small molecules with natural RNA decay and QC pathways;
and (iii) recruit endogenous nuclease to the repeats with small molecules. We will not only deliver proof-of-
concept small molecules that rescue disease-associated defects in situ and in vivo, but make new discoveries
about how to drug RNA using small molecules. Our proposed work would therefore be well supported by an
R35 award, as the flexibility conferred by this award is truly necessary to ensure sustainable, long-term funding
and the investment required to develop a new code for how molecules interface with RNA in health and disease.
项目摘要:一个非常具有挑战性的问题是开发针对缺陷的通用方法
或者是有选择性地导致疾病的故障RNA。目前靶向RNA的治疗策略是基于
寡核苷酸对特定序列的识别。然而,许多人类疾病是由高度
不容易通过常规碱基配对靶向的结构化RNA,特别是
导致或促成>30种无法治愈的神经肌肉疾病和遗传性痴呆。因此,等位基因-
针对这些微卫星疾病的特异性ASO模式已经通过靶向多态性而被开发出来
在重复序列之外。这种方法的后果是,只有患有
多态性从治疗中受益,并且必须为每种疾病开发阿索,即使是由基因多态性引起的。
相同的重复序列。如果这些疾病中的毒素,即扩展的重复序列,
选择性地与结构特异性小分子结合,那么单一形式可以是治疗剂或化学制剂。
适用于多种疾病和所有患者的探头。
在过去的14年里,我们已经证明,RNA结构可以选择性地与小分子靶向
在原位和体内,比寡核苷酸更有选择性。事实上,我们已经设计了针对许多
RNA重复序列扩增,选择性地识别靶标结构并拯救疾病相关的
原位和体内病理生物学。此外,这些化学探针已经阐明了疾病的新机制,
包括以前未知的RNA介导的转录沉默途径,
综合征这些研究,沿着我们的创新策略,在疾病部位合成药物,
工程小分子具有新的活性,包括反义或CRISPR样作用模式,奠定了
为我们提出的研究计划奠定基础。
在此,我们提出了一个全面的策略来研究RNA重复序列扩增的分子识别
通过原位和体内的小分子,能够建立新的化学生物学框架来靶向
使用小分子的RNA和临床前候选物的开发。我们的研究涵盖了许多类型的
重复扩增,在序列和基因背景(内含子、非翻译区或开放阅读)上都不同
框架)。我们设计了创新的策略:(i)利用RNA重复序列的结构来诱导疾病-
使RNA合成其自身的药物;(ii)将小分子与天然RNA衰变和QC途径连接;
和(iii)用小分子将内源性核酸酶募集到重复序列中。我们不仅要提供证据,
概念小分子,拯救原位和体内疾病相关的缺陷,但新的发现
关于如何用小分子给RNA加药因此,我们建议的工作将得到
R35奖,因为该奖项所赋予的灵活性对于确保可持续的长期资金确实是必要的
以及开发一种新的密码所需的投资,以了解分子如何与RNA在健康和疾病中相互作用。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methods for the study of ribonuclease targeting chimeras (RiboTACs).
核糖核酸酶靶向嵌合体 (RiboTAC) 的研究方法。
- DOI:10.1016/bs.mie.2023.06.006
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Springer,NoahA;Meyer,SamanthaM;Taghavi,Amirhossein;Benhamou,RaphaelI;Tong,Yuquan;Childs-Disney,JessicaL;Disney,MatthewD
- 通讯作者:Disney,MatthewD
Small molecule 1a reduces FMRpolyG-mediated toxicity in in vitro and in vivo models for FMR1 premutation.
小分子1a降低了FMRPolyg介导的fMR1前体体体内和体内模型中的毒性。
- DOI:10.1093/hmg/ddab143
- 发表时间:2021-08-12
- 期刊:
- 影响因子:3.5
- 作者:Haify SN;Buijsen RAM;Verwegen L;Severijnen LWFM;de Boer H;Boumeester V;Monshouwer R;Yang WY;Cameron MD;Willemsen R;Disney MD;Hukema RK
- 通讯作者:Hukema RK
Programming inactive RNA-binding small molecules into bioactive degraders.
- DOI:10.1038/s41586-023-06091-8
- 发表时间:2023-06
- 期刊:
- 影响因子:64.8
- 作者:Tong, Yuquan;Lee, Yeongju;Liu, Xiaohui;Childs-Disney, Jessica L.;Suresh, Blessy M.;Benhamou, Raphael I.;Yang, Chunying;Li, Weimin;Costales, Matthew G.;Haniff, Hafeez S.;Sievers, Sonja;Abegg, Daniel;Wegner, Tristan;Paulisch, Tiffany O.;Lekah, Elizabeth;Grefe, Maison;Crynen, Gogce;Van Meter, Montina;Wang, Tenghui;Gibaut, Quentin M. R.;Cleveland, John L.;Adibekian, Alexander;Glorius, Frank;Waldmann, Herbert;Disney, Matthew D.
- 通讯作者:Disney, Matthew D.
Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit.
- DOI:10.1007/s40120-023-00548-8
- 发表时间:2023-12
- 期刊:
- 影响因子:3.7
- 作者:Sattler, Rita;Traynor, Bryan J.;Robertson, Janice;Van den Bosch, Ludo;Barmada, Sami J.;Svendsen, Clive N.;Disney, Matthew D.;Gendron, Tania F.;Wong, Philip C.;Turner, Martin R.;Boxer, Adam;Babu, Suma;Benatar, Michael;Kurnellas, Michael;Rohrer, Jonathan D.;Donnelly, Christopher J.;Bustos, Lynette M.;Van Keuren-Jensen, Kendall;Dacks, Penny A.;Sabbagh, Marwan N.
- 通讯作者:Sabbagh, Marwan N.
A meditation on accelerating the development of small molecule medicines targeting RNA.
关于加速开发针对 RNA 的小分子药物的思考。
- DOI:10.1080/17460441.2022.2084528
- 发表时间:2023
- 期刊:
- 影响因子:6.3
- 作者:Yang,Xueyi;Childs-Disney,JessicaL;Disney,MatthewD
- 通讯作者:Disney,MatthewD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew D Disney其他文献
Short-circuiting RNA splicing
短路 RNA 剪接
- DOI:
10.1038/nchembio1208-723 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:13.700
- 作者:
Matthew D Disney - 通讯作者:
Matthew D Disney
Matthew D Disney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew D Disney', 18)}}的其他基金
RNA Targeted Drug Discovery and Development for Parkinson Disease
帕金森病的 RNA 靶向药物发现和开发
- 批准号:
10392570 - 财政年份:2021
- 资助金额:
$ 138.75万 - 项目类别:
Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
- 批准号:
10380131 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Targeted degradation of RNAs by using small molecules
使用小分子靶向降解 RNA
- 批准号:
10374774 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
- 批准号:
10595458 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Targeted degradation of RNAs by using small molecules
使用小分子靶向降解 RNA
- 批准号:
10661487 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Pathophysiology of genetically defined dementia and neurodegeneration: Defining therapeutic targets and pathways
基因定义的痴呆和神经变性的病理生理学:定义治疗靶点和途径
- 批准号:
10595451 - 财政年份:2017
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
8948649 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9387054 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9149039 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9540084 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 138.75万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 138.75万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 138.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 138.75万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 138.75万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 138.75万 - 项目类别: