Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
基本信息
- 批准号:10018696
- 负责人:
- 金额:$ 75.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAmino Acid SequenceAmino AcidsBenchmarkingBetaineBioinformaticsCell membraneCodeComparative StudyComputer softwareComputing MethodologiesCrystallizationDataData SetDatabasesDetectionDeuteriumDevelopmentDistantElectron Spin Resonance SpectroscopyElementsEncyclopediasEnvironmentEvolutionEyeFDA approvedFutureGenesGenomeGrowthHomologous GeneHomology ModelingHumanHydrogenHydrophobicityIntuitionManualsMembraneMembrane ProteinsMethodologyMethodsModelingMolecularMolecular ConformationNational Institute of Neurological Disorders and StrokeNatureNeuronsOnline SystemsOrganismPatternPharmaceutical PreparationsPhysiologicalProceduresProcessProgramming LanguagesProtein AnalysisProteinsProtocols documentationPythonsResolutionRunningSequence AlignmentStructural ProteinStructureSyncopeTechniquesTechnologyTestingTranslatingUpdatebasebiophysical techniquesdata visualizationdata warehousedatabase structureimprovedinsightonline resourceprotein functionprotein structureprotein structure predictionsimulationstructural biologythree dimensional structuretoolusabilityweb interface
项目摘要
During evolution, proteins retain common three-dimensional structural features, even though the underlying sequence of amino acids can diverge dramatically. Such relationships can even be found internally within a given protein structure, arising from duplication and repetition of defined elements. Identifying relationships between two proteins, or two regions of the same protein, that are very distantly related, therefore, can be extremely valuable. Most often, identification of those relationships is needed on the level of primary amino acid codes, which is achieved by aligning their sequences. However, when structures have been determined, such relationships can be detected by overlaying common regions, a technique known as structure alignment. Both procedures involve considerable challenges, especially when the similarities between the two proteins are small. Consequently, there remains a need for methods that reliably and accurately compute sequence or structure alignments. In the past year, we have combined efforts from two different fronts in developing such tools.
First, we have made improvements to our benchmark set of homologous membrane protein structures, earlier versions of which were called HOMEP. The code used to compile the dataset is now in the Python programming language, is more streamlined and can run in parallel, allowing for fast future updates as the database of available membrane protein structures continues its pseudo-exponential growth. These changes will facilitate retraining of, and therefore improvements in, our sequence alignment software, AlignMe developed previously.
Second, we have expanded upon an earlier (manual) analysis of symmetries in structures of membrane proteins. We first assessed the reliability of available symmetry-detection approaches, by developing a benchmark set of symmetry-containing proteins (called MemSTATS), and testing available methods for their accuracy at detecting these symmetries. We then developed a protocol based on two of these available symmetry analysis tools (SymD and CEsymm), and apply it systematically to known protein structures. This approach is expected to identify patterns and relationships in symmetrical and asymmetrical membrane proteins and to reveal how those symmetries relate to functional mechanisms. The symmetry datasets and all relevant code have been made available through an online data repository.
These two analyses have now been combined into a single database called EncoMPASS (Encyclopedia for Membrane Proteins Analyzed by Structure and Symmetry). We have recently made steps to integrate the software underlying the two components of the database. The combination allows us to leverage information about structural neighbors in order to improve the quality and applicability of the symmetry analysis. Moreover, with the aid of the NINDS intramural Bioinformatics staff (Yavaktar and Kumar), we have made visualization of the data fully accessible through a public webserver hosted at https://encompass.ninds.nih.gov. In the past year, we have substantially expanded the search functions for the database, as well as improving the usability and functionality of the web interface. See Ref. 1.
In parallel to these studies, we have demonstrated the use of an advanced molecular simulation methodology called EBmetaD developed at NHBLI in the Faraldo-Gomez lab, for providing a quantitative interpretation of electron paramagnetic resonance distance distributions. We applied this method to data obtained by our collaborators (Ziegler, Regensburg, and Prisner, Frankfurt) in simulations of known structures of a betaine transporter, which enabled us to distinguish between states that are likely to be present in the experimental ensemble under physiologically-relevant conditions; ref. 2. This method should be useful for defining the states present in conformational cycles of neuronal transporters such as SERT and DAT.
在进化过程中,蛋白质保留了共同的三维结构特征,即使氨基酸的基本序列可以显着不同。这种关系甚至可以在给定的蛋白质结构内部发现,这是由定义元素的复制和重复引起的。因此,识别两个蛋白质或同一蛋白质的两个区域之间的关系非常有价值。大多数情况下,需要在一级氨基酸代码的水平上识别这些关系,这是通过比对它们的序列来实现的。然而,当已经确定结构时,可以通过覆盖公共区域来检测这种关系,这是一种称为结构对准的技术。这两种方法都涉及相当大的挑战,特别是当两种蛋白质之间的相似性很小时。因此,仍然需要可靠且准确地计算序列或结构比对的方法。在过去一年中,我们从两个不同方面共同努力,开发了这些工具。
首先,我们对同源膜蛋白结构的基准集进行了改进,其早期版本被称为HOMEP。用于编译数据集的代码现在是Python编程语言,更加精简,可以并行运行,随着可用膜蛋白结构的数据库继续其伪指数增长,允许快速更新。这些变化将有助于重新训练,因此改进,我们的序列比对软件,AlignMe以前开发的。
第二,我们已经扩大了早期(手动)的膜蛋白结构的对称性分析。我们首先评估了可用的对称性检测方法的可靠性,通过开发一组基准的含对称性的蛋白质(称为MemSTATS),并测试可用的方法在检测这些对称性时的准确性。然后,我们开发了一个协议的基础上,这些可用的对称性分析工具(SymD和CEsymm),并将其系统地应用于已知的蛋白质结构。这种方法有望确定对称和不对称膜蛋白的模式和关系,并揭示这些对称性与功能机制的关系。对称数据集和所有相关代码已通过在线数据存储库提供。
这两个分析现在已经被合并到一个名为EncoMPASS(结构和对称性分析膜蛋白百科全书)的数据库中。我们最近已采取步骤,整合数据库两个组成部分的软件。这种结合使我们能够利用结构邻居的信息,以提高对称性分析的质量和适用性。此外,在NINDS内部生物信息学工作人员(Yavaktar和Kumar)的帮助下,我们已经通过https://encompass.ninds.nih.gov托管的公共网络服务器完全访问了数据的可视化。在过去的一年中,我们大大扩展了数据库的搜索功能,并改进了网络界面的可用性和功能。参见参考文献1。
在这些研究的同时,我们已经证明了在Faraldo-Gomez实验室的NHBLI开发的称为EBmetaD的先进分子模拟方法的使用,用于提供电子顺磁共振距离分布的定量解释。我们将这种方法应用于我们的合作者(齐格勒,里根斯堡和Prisner,法兰克福)在模拟甜菜碱转运蛋白的已知结构中获得的数据,这使我们能够区分在生理相关条件下可能存在于实验系综中的状态;参考文献2。这种方法应该是有用的,用于定义的状态,如SERT和DAT神经元转运蛋白的构象循环。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucy Forrest其他文献
Lucy Forrest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucy Forrest', 18)}}的其他基金
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
9563174 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
10708625 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
10915991 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
10263051 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
8940130 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
Development and assessment of methods for membrane protein structure prediction
膜蛋白结构预测方法的开发和评估
- 批准号:
9358610 - 财政年份:
- 资助金额:
$ 75.43万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 75.43万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 75.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)