Alzheimer's Disease Therapeutic
阿尔茨海默病治疗
基本信息
- 批准号:8306435
- 负责人:
- 金额:$ 120.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAffectAgitationAlzheimer&aposs DiseaseAmericanAmericasAmyloid beta-ProteinAnimal ModelAntineoplastic AgentsBehavioralBioavailableBiological AssayBiological AvailabilityBladder ControlBrainCaliforniaCancer PatientCapitalCause of DeathCellsCerebral cortexCessation of lifeCharacteristicsClinical TrialsCognition DisordersCognitiveComplexCyclic GMPDefecationDemographic AgingDevelopmentDiagnosisDiseaseDisease ProgressionDown-RegulationDrug FormulationsDrug KineticsDrug or chemical Tissue DistributionEmotionalEngineeringEuropeFaceFibroblastsFrequenciesFunctional disorderGenerationsHippocampus (Brain)HumanHumidityImpaired cognitionIn VitroInstitutesJapanJudgmentLaboratoriesLanguageLeadLearningLegal patentMacrolidesMarketingMeasuresMedicalMemoryMethodologyMethodsMitogen Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3MossesNanotechnologyNauseaNeuronsNeurosciencesOilsOralOutcomePaclitaxelPatientsPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhase II Clinical TrialsPhase III Clinical TrialsPhosphorylationPlasmaPolymersPopulationPreventiveProduct RProtein Kinase CQuality of lifeRadioactiveResearch InstituteResearch PersonnelRunningScientistSeaSenile PlaquesSeriesShort-Term MemoryStagingSymptomsTemperatureTherapeuticTimeToxicologyTransgenic MiceUnited StatesVomitingWild Type Mousebasebehavior changebrain tissuebryostatinchemotherapycommercializationcostdemographicsdesigndosagegood laboratory practiceimprovedin vivomanufacturing processmeetingsmembrane activitynanoparticlenervous system disorderneuroprotectionnovelnovel therapeuticspre-clinicalpreclinical studyprematureproduct developmentpublic health relevanceresearch and developmentshogaolstability testing
项目摘要
DESCRIPTION (provided by applicant): Alzheimer's Disease (AD) is a significant neurological disorder that afflicts more than 4.5 million Americans and more than 10 million people worldwide. The lack of a cure for AD will result in a demand for better and safer AD drugs. All of the drugs on the market today have serious side effects. Recently, researchers at The Blanchette Rockefeller Neurosciences Institute, Rockville, MD have hypothesized and shown that protein kinase C (PKC) and its activation are important means of ameliorating AD pathophysiology and cognitive impairment. They have shown that sub-nanomolar concentrations of bryostatin 1, a potent PKC activator, dramatically enhance the generation of non-amyloidogenic soluble amyloid precursor protein (sAPP) in fibroblasts from AD patients. Bryostatin 1 was effective in reducing brain amyloid plaques (A240 and A242 in AD) in double-transgenic mice while improving behavioral outcomes and the rate of premature death. These researchers have also shown that bryostatin 1 not only produces a neuroprotective effect but also enhances cognitive memory in AD animal models. Bryostatin 1 is a complex cyclic macrolide molecule that occurs in very small concentrations (~ 5 to 25 ppm) in a bryozoan, sometimes referred to as a "sea moss" found off the coast in Southern California. Bryostatin 1 is also more hydrophobic than paclitaxel, the potent anticancer drug with well-known formulation difficulties. Aphios has developed and patented improved methodologies and manufacturing processes for cost-effectively isolating pharmaceutical-grade bryostatin 1 from Bugula neritina. Our scientists and engineers have also developed methods for formulating hydrophobic molecules such as bryostatin 1 in stable, readily bioavailable oil-based formulations, and novel nanotechnology formulations of bryostatin 1 that will further improve oral bioavailability. Aphios' Zindol(R) product, which contains oil soluble gingerols and shogaols, recently completed a successful Phase II/III clinical trial for nausea and emesis in cancer patients undergoing chemotherapy. Our Phase I Specific Aims are to: (1) Develop conventional and nanotechnology oral formulations of bryostatin 1; and (2) Test stability of selected formulations under accelerated conditions of temperature and humidity, and evaluate in vitro characteristics and in vivo efficacy. We have set three milestones to be achieved before moving on to Phase II. Our Phase I milestones are as follows: stable lyophilized and/or oil-based nanoparticles formulation of bryostatin-1 in the size range of 100 to 200 nm range containing 1 to 10 5g/mL bryostatin 1 with a drug:polymer ratios of 1:10 to 1:100; brief (5-15 minutes), low dosages (0.04-0.2 nM) and application frequencies 1-2 x /week will provide maximal PKC activation and minimal downregulation; and 30% to 50% enhancement of learning and memory in the wild type of mice and even greater enhancement in the transgenic mice due to neuroprotection. Our Phase II Specific Aims are as follows: (1) Specific Aim 1: For selected formulations, radioactive bryostatin 1 will be assayed to determine the pharmacokinetics and tissue distribution. Pharmacologic efficacy will also be measured, particularly in the brain and plasma compartments by total PKC activity, membrane/cytosolic PKC activity ratios, and phosphorylation of ERK 1/2 MAP Kinase; and (2) Specific Aim 2: Establish cGMP manufacturing of the bryostatin 1 API (active pharmaceutical ingredient) and FDP (final or formulated drug product) at the pilot-scale level. Establish a Drug Master File, design IND-enabling preclinical studies and Phase I/II clinical trials, and draft IND package: In a Phase III commercialization effort, we will conduct IND-enabling preclinical in vivo studies, including toxicology, efficacy, pharmacology and stability testing of selected formulation of bryostatin 1 drug product under Good Laboratory Practices (GLP) conditions. These studies will be conducted by a CRO such as Southern Research Institute or Covance Laboratories. As part of our commercialization effort, Aphios Corporation will also establish a wholly owned subsidiary Amylon Pharmaceuticals to focus on the discovery and development of novel therapeutics for Alzheimer's Disease and Cognitive Disorders with bryostatin-1 as its lead compound. Amylon Pharmaceuticals will raise a Series A round of $20 million USD in equity capital to accelerate the development of bryostatin 1 for Alzheimer's Disease and Cognitive Disorders. This capital will be utilized to: (i) establish a management and product development team; (ii) conduct Phase I human clinical trials; (iii) research and development of second- generation products; and (iv) manufacture cGMP products over a two-year period. Within 12 months of the Series A raise, Amylon plans to initiate the establishment of a $25 million USD Series B round to conduct Phase II clinical trials in year 3. Later, Amylon plans to do an IPO to raise $100 million to conduct Phase III clinical trials and commercialize bryostatin 1 for Alzheimer's Disease and Cognitive Disorders. Alternatively, at this stage, Amylon will merge with a mid-tier public company or be acquired by a multinational pharmaceutical company.
PUBLIC HEALTH RELEVANCE: Alzheimer's Disease (AD) is the third largest cause of death in America and among the highest in the industrial world. AD is a significant neurological disorder that affects more than 4.5 million Americans and more than 10 million people worldwide. This problem will increase with the demographics of aging populations in United States, Europe and Japan. Experts estimate that 22 million people around the world and more than 8 million Americans would be affected with AD by 2025. The total market of AD drugs in 2005 was over $2.7 billion. Due to the changing demographics, the market is expected to grow quickly. Because of the growing number of new cases each year, the market is expected to grow at a rate of 17.5%. To meet this unmet medical need and market demand, we propose to develop a novel therapeutic that has the potential to significantly reduce the personal quality of life and national financial impact of this debilitating disease.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TREVOR P. CASTOR其他文献
TREVOR P. CASTOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TREVOR P. CASTOR', 18)}}的其他基金
Double-Encapsulated mRNA Vaccine for COVID-19
适用于 COVID-19 的双囊 mRNA 疫苗
- 批准号:
10611763 - 财政年份:2023
- 资助金额:
$ 120.26万 - 项目类别:
Combination Therapeutic for Chronic Opioid Use Disorder Relapse
慢性阿片类药物使用障碍复发的联合治疗
- 批准号:
10706844 - 财政年份:2023
- 资助金额:
$ 120.26万 - 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
- 批准号:
8966448 - 财政年份:2015
- 资助金额:
$ 120.26万 - 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
- 批准号:
8834719 - 财政年份:2014
- 资助金额:
$ 120.26万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 120.26万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 120.26万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 120.26万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 120.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists