Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
基本信息
- 批准号:10019542
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAwardBathingBiosensorCalciumCalcium ChannelCell LineCell physiologyCellsChronicChronic diarrheaConstipationConsumptionDataDiagnosisDyspepsiaElectrophysiology (science)EnteralEnteroendocrine CellEpithelialEpitheliumEsthesiaFoundationsGastrointestinal DiseasesGastrointestinal MotilityGastrointestinal PhysiologyGastrointestinal tract structureGenerationsGenetic TranscriptionGoalsHealthHealthcareHumanImageIn VitroIntestinesIon ChannelIrritable Bowel SyndromeKnock-outKnockout MiceKnowledgeLaboratoriesLeadLightLimb structureLinkMechanicsMethodsMolecularMusNeuroepithelialOrganOrganoidsOutcomePathway interactionsPatientsPhysiologicalPhysiologyPiezo 2 ion channelPopulationPositioning AttributeRegulationReporterRoleRyanodine Receptor Calcium Release ChannelSensorySerotoninSignal TransductionSignaling MoleculeSmooth MuscleSymptomsTestingTissuesTransgenic MiceUnited States National Institutes of HealthVisceralWorkafferent nervebasecell motilitycost estimateexperimental studygastrointestinalgastrointestinal epitheliumgastrointestinal functionglucagon-like peptide 1in vivoinnovationmechanical forcemechanotransductionmouse modelnew therapeutic targetnovelnovel diagnosticsoptogeneticsproductivity losspublic health relevancereceptorresponseselective expressionsensorvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Functional gastrointestinal diseases (FGIDs), like irritable bowel syndrome, affect ~15% of the US population.
Disruptions in the sensation of forces, also known as mechanosensation, are frequent in patients with FGIDs.
Therefore, my laboratory’s long-term goal is to elucidate the cellular and molecular mechanisms of
gastrointestinal (GI) mechanosensitivity in health and FGIDs. There are several mechanosensory pathways in
the GI tract. One important mechanosensory pathway involved in FGIDs is neuro-epithelial, which is composed
of a specialized sensory epithelial enteroendocrine cells (EECs) and intrinsic or extrinsic afferent neurons. We
discovered a sub-population EECs which are mechanosensitive and express a mechanosensitive ion channel,
Piezo2. In these mechanosensitive EECs, force-driven activation of Piezo2 channels is necessary for
generation of “receptor currents” that lead to intracellular Ca2+ increases, the release of signaling molecules
and downstream physiologic effects, like epithelial secretion. Thus, Piezo2 EECs appear to be important
epithelial mechanosensors, but knowledge gaps limit our ability to target them. The overall objective of this
proposal is to determine Piezo2 EECs roles in GI physiology by testing a novel hypothesis that
mechanosensitive Piezo2 EECs use a Ca2+ signaling cascade to link Piezo2 activation with release of 5-
HT and/or GLP-1 and thereby regulate GI motility and secretion. We will test the hypothesis in 3 Specific
Aims. In Aim 1, we will determine the precise mechanotransduction mechanism that connects a very rapid
Piezo2 receptor current with prolonged intracellular Ca2+ increase that is necessary for the release of signaling
molecules. In Aim 2, we will determine Piezo2 EEC sub-populations based on GI region and the signaling
molecules they contain and release. In Aim 3, we will determine how mechanosensitive Piezo2 EECs regulate
mechanically induced GI secretion and contractions. We established novel transgenic mouse models that allow
us to lineage track, stimulate, and interrogate specific EEC sub-populations. We will use these mouse models
and validated EEC lines in a range of innovative and established approaches from single cells to in vivo to
determine mechanosensitive EEC functions and their roles in GI physiology. The experiments are
foundationally linked to previous work but represent a new and exciting direction and can we can complete in
the defined award period. The results from these studies are poised to provide significant advances in the
understanding of basic cellular and molecular mechanotransduction mechanisms, sensory epithelial function,
GI mechanobiology, and have a broad translational value in physiology. A deep understanding of EEC
mechanotransduction positions us well to determine alterations in mechanosensitive EECs in FGIDs, so that
we may target them as novel and specific therapies.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Beyder其他文献
Arthur Beyder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Beyder', 18)}}的其他基金
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10206133 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10443589 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10654634 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
9317486 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
8948535 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的力转导机制
- 批准号:
9111900 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
10624924 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
9905495 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
10452931 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 35.78万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 35.78万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 35.78万 - 项目类别:
Discovery Grants Program - Individual