National Infrastructure for Standardized and Portable EHR Phenotyping Algorithms
标准化和便携式 EHR 表型算法的国家基础设施
基本信息
- 批准号:10021669
- 负责人:
- 金额:$ 70.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsArchitectureBenchmarkingBenign Prostatic HypertrophyClinicalClinical DataClinical ResearchClinical TrialsCodeCollaborationsCommunitiesComplexComputerized Medical RecordComputing MethodologiesConsensusConsumptionDataData ElementData ReportingDevelopmentEducational workshopElectronic Health RecordElectronic Medical Records and Genomics NetworkEngineeringEventExclusion CriteriaFast Healthcare Interoperability ResourcesFlowchartsGenomicsGoldGrantHealthHealth systemHealthcare SystemsHumanInformaticsInfrastructureIntuitionKnowledgeLogicMeasuresMedicalMethodsModelingNatural Language ProcessingNeeds AssessmentObservational StudyOutcomePatientsPerformancePhasePhenotypePrecision Medicine InitiativeProcessPublic HealthPublic Health InformaticsRare DiseasesResearchResearch PersonnelResolutionResourcesRisk FactorsRunningScientistServicesStandardizationStructureSystemTechniquesTextTimeTranslational ResearchUnited States National Institutes of HealthUniversity Hospitalsauthoritybasebiobankclinical phenotypecohortcomparative effectiveness studycomputable phenotypescostdata modelingdata warehousedatabase querydeep learningdesignendophenotypeexperienceinclusion criteriainformatics traininginformation modelknowledge basemeetingsphenotyping algorithmportabilityprecision medicinerepositorystructured datasyntaxtoolusability
项目摘要
PROJECT SUMMARY
With the rapidly growing adoption of patient electronic health record systems (EHRs) due to Meaningful Use,
and linkage of EHRs to research biorepositories, evaluating the suitability of EHR data for clinical and
translational research is becoming ever more important, with ramifications for genomic and observational
research, clinical trials, and comparative effectiveness studies. A key component for identifying patient cohorts
in the EHR is to define inclusion and exclusion criteria that algorithmically select sets of patients based on
stored clinical data. This process is commonly referred to, as “EHR-driven phenotyping” is time-consuming
and tedious due to the lack of a widely accepted and standards-based formal information model for defining
phenotyping algorithms. To address this overall challenge, the proposed project will design, build and promote
an open-access community infrastructure for standards-based development and sharing of phenotyping
algorithms, as well as provide tools and resources for investigators, researchers and their informatics support
staff to implement and execute the algorithms on native EHR data.
项目总结
随着由于有意义的使用而迅速采用患者电子健康记录系统(EHR),
以及将电子病历与研究生物信息库联系起来,评估电子病历数据对临床和
翻译研究正变得越来越重要,对基因组和观察学都有影响
研究、临床试验和比较效果研究。用于确定患者队列的关键组件
在电子病历中,定义纳入和排除标准,根据算法选择患者组
存储的临床数据。这一过程通常被称为“EHR驱动的表型”是耗时的
由于缺乏被广泛接受的、基于标准的正式信息模型来定义
表型算法。为了应对这一总体挑战,拟议的项目将设计、建造和推广
开放访问的社区基础设施,用于基于标准的开发和表型共享
算法,并为调查人员、研究人员及其信息学支持提供工具和资源
工作人员在原生EHR数据上实施和执行算法。
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some experiences and opportunities for big data in translational research.
- DOI:10.1038/gim.2013.121
- 发表时间:2013-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Quantifying the importance of disease burden on perceived general health and depressive symptoms in patients within the Mayo Clinic Biobank.
- DOI:10.1186/s12955-015-0285-6
- 发表时间:2015-07-03
- 期刊:
- 影响因子:3.6
- 作者:Ryu E;Takahashi PY;Olson JE;Hathcock MA;Novotny PJ;Pathak J;Bielinski SJ;Cerhan JR;Sloan JA
- 通讯作者:Sloan JA
CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping.
CQL4NLP:在临床质量语言中开发和集成 FHIR NLP 扩展,以实现 EHR 驱动的表型分析。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wen,Andrew;Rasmussen,LukeV;Stone,Daniel;Liu,Sijia;Kiefer,Rick;Adekkanattu,Prakash;Brandt,PascalS;Pacheco,JenniferA;Luo,Yuan;Wang,Fei;Pathak,Jyotishman;Liu,Hongfang;Jiang,Guoqian
- 通讯作者:Jiang,Guoqian
Integration of NLP2FHIR Representation with Deep Learning Models for EHR Phenotyping: A Pilot Study on Obesity Datasets.
NLP2FHIR 表示与 EHR 表型深度学习模型的集成:肥胖数据集的试点研究。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu,Sijia;Luo,Yuan;Stone,Daniel;Zong,Nansu;Wen,Andrew;Yu,Yue;Rasmussen,LukeV;Wang,Fei;Pathak,Jyotishman;Liu,Hongfang;Jiang,Guoqian
- 通讯作者:Jiang,Guoqian
Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project.
- DOI:10.1016/j.jbi.2012.01.009
- 发表时间:2012-08
- 期刊:
- 影响因子:4.5
- 作者:Rea S;Pathak J;Savova G;Oniki TA;Westberg L;Beebe CE;Tao C;Parker CG;Haug PJ;Huff SM;Chute CG
- 通讯作者:Chute CG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUAN LUO其他文献
YUAN LUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUAN LUO', 18)}}的其他基金
Modeling the Incompleteness and Biases of Health Data
对健康数据的不完整性和偏差进行建模
- 批准号:
10381541 - 财政年份:2020
- 资助金额:
$ 70.69万 - 项目类别:
Modeling the Incompleteness and Biases of Health Data
对健康数据的不完整性和偏差进行建模
- 批准号:
10581658 - 财政年份:2020
- 资助金额:
$ 70.69万 - 项目类别:
SIGNALING MECHANISMS IN DOPAMINE RECEPTOR SYNERGISM
多巴胺受体协同作用中的信号机制
- 批准号:
7235701 - 财政年份:2003
- 资助金额:
$ 70.69万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.69万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 70.69万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 70.69万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 70.69万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 70.69万 - 项目类别:
Standard Grant














{{item.name}}会员




