Function of kinetochore proteins in post-mitotic neurons
有丝分裂后神经元着丝粒蛋白的功能
基本信息
- 批准号:10026166
- 负责人:
- 金额:$ 43.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAllelesAxonBehaviorBindingBiological AssayCell CycleCell ShapeCellsChromosomesComplexCuesDataDendritesDistalDrosophila genusDynein ATPaseElementsFoundationsGenetic SuppressionGoalsGolgi ApparatusGrowthHealthKinetochoresLabelLasersLeftLifeLinkLysosomesMaintenanceMicrosurgeryMicrotubulesMinus End of the MicrotubuleMitosisMitoticMitotic spindleModelingMonitorMusNeuronsOrganellesOutcomePathway interactionsPhenotypePilot ProjectsPlayPlus End of the MicrotubuleProteinsRegulationRegulatory PathwayRodentRoleSet proteinSiteSpottingsStructureTestingTravelValidationWorkbaseflygenetic analysisinhibitor/antagonistknock-downlink proteinmutantneuronal cell bodyneuroprotectionprotein complexprotein functionrecruitresponse
项目摘要
Project Summary
Microtubules are both critical structural elements and the tracks for long-range transport. They are
much more stable in neurons than other cells, and, surprisingly, the regulatory machinery associated with
kinetochores in mitosis is required for this stability. KMN network proteins link the kinetochore to dynamic
microtubules in mitosis and were recently shown to impact cell shape in post-mitotic mouse, worm and fly
neurons. Preliminary data in this proposal indicates they function to suppress microtubule dynamics in
neurons. A similar role in regulation of neuronal microtubule dynamics was found for the regulatory
Chromosome Passenger Complex (CPC) and Spindle Assembly Checkpoint (SAC) proteins. How and where
these mitotic proteins act in mature neurons to control microtubule stability will be investigated.
Aim 1 What pathway is used by kinetochore proteins to control microtubule plus end number in neurons?
When levels of kinetochore proteins are reduced in post-mitotic Drosophila neurons, more microtubule plus
ends are observed in dendrites, but not axons. Upregulated microtubule severing or nucleation could account
for the increase in plus end number. Minus ends generated by severing are recognized by Patronin, so the
number of growing Patronin-tagged minus ends will be used to distinguish between these two possibilities.
Analysis of genetic interactions will also be used to determine whether kinetochore proteins suppress
nucleation or severing. In neurons increased nucleation is linked to neuroprotection while severing precedes
degeneration, so is it important to understand which is regulated by kinetochore proteins.
Aim 2. Where and how are KMN proteins localized in neurons? Pilot studies have demonstrated that three
different KMN network proteins localize to puncta in the neuronal cell body. The identity of these punctate
tether sites will be determined. Most likely candidates are the Golgi complex and lysosomes as these
organelles are localized predominantly in the cell body.
Aim 3. Do kinetochore proteins sense microtubule plus end arrival in the cell body? The final goal in this
proposal is to test whether kinetochore proteins function analogously in neurons and mitotic cells. In early
mitosis the KMN network cooperates with CPC and SAC proteins to sense microtubule arrival at the
kinetochore. After microtubule arrival the CPC and SAC change localization. In neurons these proteins could
work together to detect number of microtubules growing into the cell body from dendrites. To test this
hypothesis the number of microtubules entering from dendrites will be increased and decreased while
monitoring kinetochore protein localization in the cell body.
Kinetochore proteins represent major new regulators of neuronal microtubule behavior. This initial
exploration of how and where they function in neurons will provide a strong foundation for understanding their
contribution to life after mitosis.
项目摘要
微管既是重要的结构元件,也是长距离运输的通道。他们是
在神经元中比其他细胞更稳定,而且,令人惊讶的是,
这种稳定性需要有丝分裂中的动粒。KMN网络蛋白将动粒连接到动态
微管在有丝分裂和最近被证明影响细胞形状在有丝分裂后的小鼠,蠕虫和苍蝇
神经元该提案的初步数据表明,它们的功能是抑制微管动力学,
神经元在调节神经元微管动力学中,
染色体乘客复合物(CPC)和纺锤体组装检查点(SAC)蛋白。如何以及在何处
将研究这些有丝分裂蛋白在成熟神经元中控制微管稳定性的作用。
目的1着丝粒蛋白通过什么途径控制神经元微管加末端数目?
当有丝分裂后果蝇神经元中动粒蛋白的水平降低时,更多的微管加
在树突中观察到末端,但在轴突中未观察到末端。上调的微管断裂或成核可以解释
增加了正端数。由切断产生的负端被Patronin识别,所以
将使用大量生长的Patronin标记的负末端来区分这两种可能性。
遗传相互作用的分析也将用于确定动粒蛋白是否抑制
成核或切断。在神经元中,增加的成核与神经保护有关,而切断则先于
因此,重要的是要了解哪些是由动粒蛋白调节的。
目标2. KMN蛋白在神经元中的位置和方式?试点研究表明,
不同的KMN网络蛋白定位于神经元细胞体中的点。这些斑点的身份
将确定系留地点。最有可能的候选者是高尔基复合体和溶酶体,因为这些
细胞器主要位于细胞体中。
目标3。动粒蛋白能感知微管和末端到达细胞体吗?这场比赛的最终目标是
该计划旨在测试动粒蛋白在神经元和有丝分裂细胞中是否具有类似的功能。月初
在有丝分裂中,KMN网络与CPC和SAC蛋白合作,以感知微管到达有丝分裂细胞。
动粒在微管到达后,CPC和SAC改变定位。在神经元中,这些蛋白质
共同检测从树突生长到细胞体中的微管数量。为了验证这一
假设从树突进入的微管数量会增加和减少,
监测动粒蛋白在细胞体中的定位。
动粒蛋白代表了神经元微管行为的主要新调节因子。该初始
探索它们在神经元中的作用方式和位置将为理解它们的功能提供坚实的基础。
对有丝分裂后生命的贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
To nucleate or not, that is the question in neurons.
- DOI:10.1016/j.neulet.2021.135806
- 发表时间:2021-04-23
- 期刊:
- 影响因子:2.5
- 作者:Weiner AT;Thyagarajan P;Shen Y;Rolls MM
- 通讯作者:Rolls MM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Rolls其他文献
Melissa Rolls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Rolls', 18)}}的其他基金
Finding a molecular signature for dendrite regeneration
寻找树突再生的分子特征
- 批准号:
8867657 - 财政年份:2015
- 资助金额:
$ 43.37万 - 项目类别:
Do somatosensory endings use axonal or dendritic regeneration pathways?
体感末梢使用轴突或树突再生途径吗?
- 批准号:
8914067 - 财政年份:2014
- 资助金额:
$ 43.37万 - 项目类别:
Do somatosensory endings use axonal or dendritic regeneration pathways?
体感末梢使用轴突或树突再生途径吗?
- 批准号:
8807538 - 财政年份:2014
- 资助金额:
$ 43.37万 - 项目类别:
Using Drosophila Neurons to Identify Mechanisms that Control Microtubule Polarity
使用果蝇神经元识别控制微管极性的机制
- 批准号:
8269833 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Mechanisms that control neuronal microtubule polarity
控制神经元微管极性的机制
- 批准号:
10398000 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Mechanisms that control neuronal microtubule polarity
控制神经元微管极性的机制
- 批准号:
10604356 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Using Drosophila Neurons to Identify Mechanisms that Control Microtubule Polarity
使用果蝇神经元识别控制微管极性的机制
- 批准号:
8461178 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Using Drosophila Neurons to Identify Mechanisms that Control Microtubule Polarity
使用果蝇神经元识别控制微管极性的机制
- 批准号:
8651497 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Using Drosophila Neurons to Identify Mechanisms that Control Microtubule Polarity
使用果蝇神经元识别控制微管极性的机制
- 批准号:
8061983 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
Using Drosophila Neurons to Identify Mechanisms that Control Microtubule Polarity
使用果蝇神经元识别控制微管极性的机制
- 批准号:
7790177 - 财政年份:2010
- 资助金额:
$ 43.37万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 43.37万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 43.37万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 43.37万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 43.37万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 43.37万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 43.37万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 43.37万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 43.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 43.37万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 43.37万 - 项目类别:














{{item.name}}会员




