PknG mediated tailoring Mycobacterium tuberculosis adaptive metabolism is required for the persister formation
PknG 介导的剪裁结核分枝杆菌适应性代谢是持续细胞形成所必需的
基本信息
- 批准号:10002657
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibiotic TherapyAntibioticsBiochemicalBiochemical PathwayCRISPR interferenceCarbonCell surfaceChemicalsCitric Acid CycleClinicalConsumptionDataDefectDrug TargetingDrug ToleranceDrug resistanceDrug usageDrug-sensitiveEnsureFailureFinancial costFrequenciesGenesGeneticGlutamate Metabolism PathwayGlutamatesGlutamineGlycolipidsGoalsGrowthHomeostasisHumanImmune EvasionImmune responseImmune systemImpairmentIn VitroInvadedMediatingMetabolicMetabolismMicrobial BiofilmsMicrobiologyMonitorMulti-Drug ResistanceMycobacterium tuberculosisMycolic AcidNutrientOutcomeOxidation-ReductionPharmacotherapyPhenotypePlayProcessProductionPropionatesProtein KinaseReactive Oxygen SpeciesRegimenResearchResistanceRoleRouteSerine/Threonine Protein Kinase 11SourceStressSystemTestingTherapeuticTreatment FailureTuberculosisVariantWorkantibiotic toleranceantimicrobialbacterial metabolismbiological systemscompliance behaviordriving forcedrug discoveryimprovedinhibitor/antagonistlatent infectionmathematical modelmetabolomicsmicrobicidemutantmycobacterialnovel therapeuticspandemic diseasepersistent bacteriapreventresistance mutationresponsetranscriptomicstuberculosis drugstuberculosis treatment
项目摘要
RESEARCH SUMMARY
Tuberculosis (TB) has afflicted humans for roughly 70,000 years. Despite the advent of effective TB treatment
options over 50 years ago, they are lengthy and complicated, and are directly associated with high frequency of
treatment failure. The blunted efficacy of the current TB treatment is largely attributed to the ability of
Mycobacterium tuberculosis (Mtb) to form persisters, a small fraction of phenotypic variants that are tolerant to
antibiotic effects. This has been confirmed by mathematical modeling, which showed that prolonged treatment
is required to ensure persister eradication. Thus, Mtb persisters constitute a therapeutically critical facet of the
TB pandemic. However, little is known regarding the underlying metabolic processes through which Mtb forms
persisters in an effort to survive drug treatment.
PknG is one of 11 serine-threonine protein kinases and it monitors and corrects a perturbed cytoplasmic redox
state. Accumulating evidence suggests that deleterious reactive oxygen species (ROS) are produced by
antibiotics and target bacterial metabolism. Thus, ROS-mediated metabolic damage is a common microbicidal
effector. As a countermeasure, Mtb has evolved adaptive metabolic mechanisms to circumvent antibiotic-
mediated ROS production. Our preliminary data proved this by showing that Mtb seeks to avoid ROS damage,
by maintaining essential metabolic activities such as the methylcitrate cycle (MCC) and TCA cycle for survival
not by using external nutrients but by catabolically remodeling abundant endogenous mycolic acid. We also
observed that PknG-mediated remodeling in glutamine-glutamate metabolism plays a crucial role in mitigating
metabolic damage induced by overactive MCC. Taken together, inactivation of the MCC and/or PknG-mediated
regulatory function impairs persister formation. Thus, we hypothesize that mycolic acid serves as an internal
carbon reservoir to compensate for nutrient shortage due to limited exogenous carbon support, and that mycolic
acid consumption requires regulatory crosstalk between PknG and MCC. The goals of this application are: to
validate the relative contribution of mycolic acid consumption (Aim 1) and PknG-mediated metabolic remodeling
for redox homeostasis (Aim 2) during persister formation and subsequent drug-tolerance. The outcomes of Aims
1 and 2 will be assessed as therapeutic options that can be used to enhance the efficacy of the current standard
TB drug regimen by preventing persister formation, interfering with the immune-evasion strategy, and eradicating
the metabolically synchronized Mtb (Aim 3). Our work will offer a new drug regimen that targets crosstalk
between regulatory and catalytic circuits of Mtb metabolism. This new option will offer simpler and shorter
treatment options that will lead to increasing patient compliance and cure rates, while decreasing the emergence
of drug-resistant mutations.
研究概要
结核病 (TB) 已经困扰人类大约 70,000 年。尽管出现了有效的结核病治疗方法
50多年前的选项冗长而复杂,并且与高频率直接相关。
治疗失败。当前结核病治疗的疗效减弱很大程度上归因于
结核分枝杆菌 (Mtb) 形成持久菌,这是一小部分能够耐受的表型变异
抗生素作用。数学模型证实了这一点,表明长期治疗
需要确保根除持续存在。因此,Mtb 持续存在构成了治疗的关键方面。
结核病大流行。然而,人们对 Mtb 形成的潜在代谢过程知之甚少。
坚持努力在药物治疗中生存下来。
PknG 是 11 种丝氨酸-苏氨酸蛋白激酶之一,它监测并纠正扰动的细胞质氧化还原
状态。越来越多的证据表明,有害的活性氧 (ROS) 是由
抗生素和目标细菌代谢。因此,ROS介导的代谢损伤是一种常见的杀菌剂。
效应器。作为一种对策,结核分枝杆菌已经进化出了适应性代谢机制来规避抗生素。
介导的 ROS 产生。我们的初步数据证明了这一点,表明 Mtb 试图避免 ROS 损伤,
通过维持生存所必需的代谢活动,例如柠檬酸甲酯循环 (MCC) 和 TCA 循环
不是通过使用外部营养素,而是通过分解代谢重塑丰富的内源性分枝菌酸。我们也
观察到 PknG 介导的谷氨酰胺-谷氨酸代谢重塑在缓解
过度活跃的 MCC 引起的代谢损伤。综上所述,MCC 和/或 PknG 介导的失活
调节功能损害持续细胞的形成。因此,我们假设分枝菌酸作为一种内部
碳库来补偿由于有限的外源碳支持而导致的养分短缺,并且霉菌
酸消耗需要 PknG 和 MCC 之间的监管串扰。该应用程序的目标是:
验证分枝菌酸消耗(目标 1)和 PknG 介导的代谢重塑的相对贡献
在持续细胞形成和随后的药物耐受过程中实现氧化还原稳态(目标 2)。目标的结果
1和2将被评估为可用于增强当前标准疗效的治疗选择
通过预防持续存在形成、干扰免疫逃避策略和根除结核病药物治疗方案
代谢同步的 Mtb(目标 3)。我们的工作将提供一种针对串扰的新药物疗法
结核分枝杆菌代谢的调节和催化回路之间。这个新选项将提供更简单、更短的
治疗方案将提高患者的依从性和治愈率,同时减少出现率
的耐药突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyungjin Eoh其他文献
Hyungjin Eoh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyungjin Eoh', 18)}}的其他基金
Interplay of M. tuberculosis trehalose metabolism and its pathogenesis and drug resistance
结核分枝杆菌海藻糖代谢及其发病机制和耐药性的相互作用
- 批准号:
10585346 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
SBIR Phase II: Development of a urine dipstick test that can guide immediate and appropriate antibiotic therapy for treatment of complicated urinary tract infections
SBIR II 期:开发尿液试纸测试,可以指导复杂尿路感染的立即和适当的抗生素治疗
- 批准号:
2213034 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Cooperative Agreement
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
- 批准号:
10645528 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Strategies for improving the efficacy of combinatorial antibiotic therapy in chronic infections
提高慢性感染联合抗生素治疗疗效的策略
- 批准号:
10736285 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
A Novel Bone Targeted Antibiotic Therapy for the Treatment of Infected Fractures
一种治疗感染性骨折的新型骨靶向抗生素疗法
- 批准号:
10603486 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
- 批准号:
449379 - 财政年份:2020
- 资助金额:
$ 41.25万 - 项目类别:
Studentship Programs
Sex-Specific Differences in End-of-Life Burdensome Interventions and Antibiotic Therapy in Nursing Home Residents With Advanced Dementia
患有晚期痴呆症的疗养院居民的临终干预和抗生素治疗的性别差异
- 批准号:
422034 - 财政年份:2020
- 资助金额:
$ 41.25万 - 项目类别:
Optimizing outpatient parenteral antibiotic therapy to support hospital-in-the-home program across the unique environmental conditions of Australia
优化门诊肠外抗生素治疗,以支持澳大利亚独特环境条件下的家庭医院计划
- 批准号:
nhmrc : 1197866 - 财政年份:2020
- 资助金额:
$ 41.25万 - 项目类别:
Investigator Grants
Resistance evolution in the presence of combination antibiotic therapy
联合抗生素治疗下耐药性的演变
- 批准号:
2241853 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Studentship
Host-pathogen interactions in antibiotic therapy for listeriosis
李斯特菌病抗生素治疗中宿主与病原体的相互作用
- 批准号:
18K07106 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multipurpose targeted nano-antibiotic therapy to fight tough infection in bones
多用途靶向纳米抗生素疗法可对抗骨骼中的严重感染
- 批准号:
9788269 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:














{{item.name}}会员




