Interplay of M. tuberculosis trehalose metabolism and its pathogenesis and drug resistance
结核分枝杆菌海藻糖代谢及其发病机制和耐药性的相互作用
基本信息
- 批准号:10585346
- 负责人:
- 金额:$ 66.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-16 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AftercareAnabolismAntibioticsAntitubercular AntibioticsBacillusBacterial InfectionsC3HeB/FeJ MouseCRISPR interferenceCarbonCell WallClinicalCord FactorsCross-Sectional StudiesDevelopmentDisaccharidesDiseaseDrug TargetingDrug ToleranceDrug resistanceDrug resistance in tuberculosisDyesExhibitsFlow CytometryGenomicsGlycolipidsGoalsHealthHeterogeneityHumanImmune systemIn VitroInfectionIntrinsic factorLabelLinkMediatingMessenger RNAMetabolicMetabolismMicrobial BiofilmsMultidrug-Resistant TuberculosisMutationMycobacterium tuberculosisOutcomePathogenesisPatientsPatternPeriodicityPersonsPhenotypePlayPopulationProcessPublic HealthQuantitative Reverse Transcriptase PCRRegimenReportingResearchRoleSourceTestingTherapeuticTherapeutic InterventionTreatment ProtocolsTrehaloseTuberculosisVariantVirulenceVirulence FactorsWorkagedantibiotic tolerancebactericidebasecostdrug developmentdrug resistance developmentdrug-sensitiveepidemiology studyhigh riskin vivoinhibitorinsightmetabolomicsmortalitymouse modelmutantnovel therapeutic interventionnovel therapeuticsoverexpressionpathogenresistance mutationsynergismtuberculosis drugstuberculosis treatmentvalidamycins
项目摘要
Research Summary
Antibiotics have failed to control bacterial diseases typically due to the emergence of drug resistant (DR) mutants.
Mycobacterium tuberculosis (Mtb) is one of the world’s most successful pathogens because of its capacity to
develop DR mutants to withstand antibiotic effects. Treating DR-tuberculosis (TB) patients takes two years and
costs nearly $393,000 per person, which is substantially more expensive than ~ $49,000 per person for treating
a drug sensitive (DS)-TB patient. Despite this pressing human health problem, little is known about the
mechanistic bases underlying the development of DR-TB. Given the low genomic mutation rates and slow
replication of Mtb, intrinsic bacterial factors should play an important role in developing DR-TB, but they have
been understudied. Accumulating evidence has shown that cyclic formation of Mtb persisters, a phenotypic
variant transiently tolerant to TB antibiotics, can predispose TB patients to the emergence of permanent DR
mutants. We recently reported untargeted metabolomics profiling of Mtb persisters and revealed that Mtb shifted
its trehalose-mediated carbon flux towards the biosynthesis of central carbon metabolism (CCM) intermediates
to avoid irreversible antibiotic damage, while decreasing its flux towards the biosynthesis of cell wall mycolyl
glycolipids. This process was termed the “trehalose catalytic shift” and was identified to be essential for Mtb
persister formation, viability, and drug tolerance. In this application, we hypothesize that the trehalose catalytic
shift is an adaptive strategy executed by Mtb after treatment with TB antibiotics to achieve drug tolerance and
also to facilitate the development of DR mutants, thus altering the TB disease course. In cross-sectional studies
with 7 different clinical TB lineages, lineage 2 strains such as HN878 W-Beijing strain (HN878), have been
associated with a high risk of developing multidrug resistant (MDR)-TB and high mortality. Thus, we will examine
our hypothesis by demonstrating that HN878 is hypervirulent and more prone to develop drug resistance than
other lineage strains because of its high level of trehalose catalytic shift activity. To this end, we will determine if
the trehalose catalytic shift is an HN878 intrinsic factor responsible for its drug tolerance, DR mutation rates, and
hypervirulence in vitro, ex vivo and then apply it in vivo using a TB murine model. A successful outcome of this
application will aid in the development of new therapeutic interventions to cure DR-TB patients, including those
infected with HN878.
研究综述
抗生素未能控制细菌性疾病,通常是由于耐药(DR)突变体的出现。
结核分枝杆菌(Mtb)是世界上最成功的病原体之一,因为它能够
产生耐药突变体来抵抗抗生素的作用。治疗耐药结核病(TB)患者需要两年时间,
每人花费近393,000美元,这比每人治疗约49,000美元要贵得多
一名药物敏感(DS)结核病患者。尽管人类健康问题迫在眉睫,但人们对人类的健康状况知之甚少。
耐药结核病发展的机制基础。鉴于基因组突变率低,
结核分枝杆菌复制,内在细菌因素应该在发展耐药结核病中发挥重要作用,但它们
被研究了。越来越多的证据表明,结核分枝杆菌持续存在的周期性形成,
对结核抗生素产生短暂耐受的变异,可使结核患者易于出现永久性DR
变种人我们最近报道了结核分枝杆菌持续者的非靶向代谢组学分析,并揭示了结核分枝杆菌转移
其海藻糖介导的碳通量朝向中心碳代谢(CCM)中间体的生物合成
以避免不可逆的抗生素损伤,同时减少其流向细胞壁分枝菌酰生物合成的通量
糖脂这一过程被称为“海藻糖催化转换”,并被确定为结核分枝杆菌所必需的
持久性形成、存活力和药物耐受性。在本申请中,我们假设海藻糖催化
转移是Mtb在用TB抗生素治疗后执行的适应性策略,以实现药物耐受性,
也促进DR突变体的发展,从而改变TB病程。在横断面研究中,
与7个不同的结核病临床谱系,2个谱系如HN 878 W-北京株(HN 878),
与发展成多药耐药(MDR)-TB的高风险和高死亡率相关。因此,我们将研究
我们的假设是通过证明HN 878是高毒力的,比HN 878更容易产生耐药性,
其他谱系菌株,因为其高水平的海藻糖催化转化活性。为此,我们将确定,
海藻糖催化转换是HN 878的内在因子,负责其药物耐受性、DR突变率,
体外、离体高毒力,然后使用TB鼠模型将其应用于体内。成功的结果
应用将有助于开发新的治疗干预措施,治愈耐药结核病患者,包括那些
感染了HN 878。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyungjin Eoh其他文献
Hyungjin Eoh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyungjin Eoh', 18)}}的其他基金
PknG mediated tailoring Mycobacterium tuberculosis adaptive metabolism is required for the persister formation
PknG 介导的剪裁结核分枝杆菌适应性代谢是持续细胞形成所必需的
- 批准号:
10002657 - 财政年份:2019
- 资助金额:
$ 66.19万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 66.19万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 66.19万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 66.19万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 66.19万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 66.19万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 66.19万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 66.19万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 66.19万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 66.19万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 66.19万 - 项目类别:
Discovery Early Career Researcher Award