Mining Social Media Big Data for Toxicovigilance: Automating the Monitoring of Prescription Medication Abuse via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法自动监测处方药滥用
基本信息
- 批准号:10001871
- 负责人:
- 金额:$ 34.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdderallAddressAffectAgeAlgorithmsArtificial IntelligenceAttentionAutomationBehavior TherapyBenzodiazepinesBig DataBig Data to KnowledgeCategoriesCentral Nervous System DepressantsCessation of lifeCharacteristicsClassificationClinicalCohort StudiesCollectionCommunitiesControl GroupsDataData CollectionData SetDetectionDevelopmentDrug abuseEmergency SituationEmergency department visitEncapsulatedEpidemicEventExpert SystemsExposure toFentanylForensic MedicineFutureGenderGeographic LocationsGoalsGuidelinesHealthHealth ProfessionalHeartHeroinHospitalizationIndividualInfrastructureIngestionInterventionInvestigationKnowledgeLifeLong-Term EffectsMachine LearningManualsMedicalMetadataMethodsMiningModelingMonitorMorbidity - disease rateNamesNational Institute of Drug AbuseNatural HistoryNatural Language ProcessingObservational StudyOccupationsOpioidOutcomeOverdoseOxycodonePatient Self-ReportPatternPercocetPeriodicityPharmaceutical PreparationsPilot ProjectsPlant RootsPopulationPopulation CharacteristicsProcessPublic HealthReportingResearchSchoolsSocial ImpactsSourceSupervisionSurveillance ProgramSurveysSystemTarget PopulationsTechniquesTextTimeTimeLineTrainingTwitterUnited StatesVariantVicodinWorkaddictionadverse outcomeage groupanalogbasecohortdeep neural networkdemographicsdesigndrug misuseexperimental groupinnovationinsightinterestintervention programlearning strategymembermisuse of prescription only drugsmortalitynatural languagenonmedical usenovelnovel strategiesopen sourceopioid epidemicoverdose deathprescription drug abuseprescription monitoring programquetiapinesocial mediaspellingstudy characteristicssupervised learningtherapy development
项目摘要
Project Summary
The problem of prescription medication (PM) abuse has reached epidemic proportions in the
United States. According to a 2014 report by the Director of the National Institute on Drug
Abuse (NIDA), an estimated 52 million people, have been involved in the non-medical use of
PMs— a significant portion of which can be classified as abuse. PMs that are commonly abused
include opioids, central nervous system depressants and stimulants, and the consequences of
their abuse may be severe. Increases in PM misuse and abuse over the last 15 years have resulted
in increased emergency department visits, rates of addiction and overdose deaths. Due to the
rapidly escalating morbidity and mortality, it is now receiving national attention. The opioid
crisis, which has its root in opioid-based PM abuse, has been declared a national emergency by
the president of the United States. Despite the problems associated with PM abuse, surveillance
programs such as prescription drug monitoring programs (PDMPs) are inadequate and suffer
from numerous shortcomings, thus limiting their usefulness in real life. Studies evaluating the
long-term effects of distinct classes of PMs on cohorts of abusers are scarce and expensive to
conduct. To better characterize the problem and to monitor it in real-time, new sources of
information need to be identified and novel monitoring techniques need to be developed. To
address these problems, our project aims to utilize social media data for performing
toxicovigilance. Social media encapsulates an abundance of knowledge about PM abuse and the
abusers in the form of noisy natural language text. At the heart of the proposed approach is a
machine learning system that can automatically distinguish between `abuse' and `non-abuse'
indicating user posts collected from social media. Using this classification system, users will be
categorized into multiple groups—(i) abusers, (ii) medical users and (iii) non users. The
developed system will collect longitudinal data for users exposed the selected PMs via periodic
collection of their publicly available posts/discussions and automatically categorize them based
on age, gender and additional demographic feature, when possible. This will enable the
conducting of observational studies on targeted cohorts, involving hundreds of thousands of
cohort members. The cohort studies will focus on analyzing the transition rates from medical
use to abuse for distinct PMs and transition rates from abuse of PMs to illicit analogs.
Implementation of this data-centric framework, which will be open source, will revolutionize the
mechanism by which PM abuse monitoring is performed and enable the future development of
intervention strategies targeted towards specific cohorts, at the most effective time periods.
项目摘要
滥用处方药的问题已经达到了流行病的比例,
美国的根据国家药物研究所所长2014年的报告,
滥用(NIDA),估计有5200万人参与了非医疗使用
PM-其中很大一部分可归类为滥用。经常被滥用的PM
包括阿片类药物、中枢神经系统抑制剂和兴奋剂,
他们的虐待可能是严重的。在过去的15年里,PM误用和滥用的增加导致了
增加了急诊就诊率、吸毒成瘾率和过量死亡率。由于
发病率和死亡率迅速上升,目前正受到全国的关注。阿片类药物
这场危机的根源在于阿片类药物滥用,已被宣布为国家紧急状态,
美国总统尽管与PM滥用有关的问题,
处方药监测计划(PDMP)等计划不足,
从众多的缺点,从而限制了它们在真实的生活中的有用性。研究评估
不同类别的PM对滥用者群体的长期影响是罕见的,
行为。为了更好地描述问题的特征并实时监测,
需要查明信息,需要开发新的监测技术。到
为了解决这些问题,我们的项目旨在利用社交媒体数据进行表演,
毒物警戒社交媒体包含了大量关于PM滥用的知识,
以嘈杂的自然语言文本形式的滥用者。所提出的方法的核心是
机器学习系统,可以自动区分“虐待”和“非虐待”
表示从社交媒体收集的用户帖子。使用此分类系统,用户将
分为多个组别-(一)滥用者、(二)医疗使用者和(三)非使用者。的
开发的系统将收集纵向数据的用户暴露选定的PM通过定期
收集他们公开的帖子/讨论,并根据
年龄、性别和其他人口统计特征。这将使
对目标群体进行观察性研究,涉及数十万人,
队列成员。队列研究将重点分析从医疗过渡率
用于滥用不同的PM和过渡率从滥用PM非法类似物。
这个以数据为中心的框架将是开源的,它的实现将彻底改变
执行PM滥用监控的机制,并使未来的发展成为可能,
在最有效的时间段,针对特定群体的干预战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abeed H Sarker其他文献
Abeed H Sarker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abeed H Sarker', 18)}}的其他基金
Mining Social Media Big Data for Toxicovigilance: Studying Substance Use via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法研究药物使用
- 批准号:
10588855 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.73万 - 项目类别:
Research Grant