Mining Social Media Big Data for Toxicovigilance: Studying Substance Use via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法研究药物使用
基本信息
- 批准号:10588855
- 负责人:
- 金额:$ 127.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAmericanArtificial IntelligenceBarbituratesBig DataBig Data to KnowledgeCOVID-19 pandemicCessation of lifeClassificationCollectionComplementComplexDataData AggregationData CollectionData SetDeath RateDetectionDevelopmentDrug PrescriptionsElementsEmergency department visitEncapsulatedEpidemicEvaluationEvolutionExpert SystemsFentanylFundingFutureGenderGender IdentityGenerationsHeroinHumanIllicit DrugsInfrastructureInterventionKnowledgeLongitudinal trendsMachine LearningManualsMeasuresMethamphetamineMethodologyMethodsMiningNamesNational Institute of Drug AbuseNatural Language ProcessingObservational StudyOnline SystemsOutcomeOverdosePatient Self-ReportPatternPersonsPharmaceutical PreparationsPoliciesPopulationProcessPublicationsRaceReportingResearchResourcesSourceSource CodeStigmatizationSubstance Use DisorderSupervisionSurveysTarget PopulationsTimeTimeLineTwitterUninsuredUnited StatesValidationVariantWorkXylazineage groupanalogbasecohortcostdashboarddata accessdata miningdata toolsdata visualizationdetection methodethnic minorityevidence baseexperienceimprovedinnovationinsightinterestlearning strategylongitudinal analysismachine learning methodnovelnovel strategiesopen sourceopen source toolopioid epidemicoverdose deathpreferencepsychostimulantracial and ethnicreal time monitoringresponsesocial mediasocial stigmaspellingstatisticssubstance usesurveillance strategysynthetic opioidtreatment disparitytrendtrend analysis
项目摘要
The epidemic of substance use (SU) and substance use disorder (SUD) in the United States has been evolving for
decades. Both prescription and illicit drugs have been involved in overdose deaths over the years, with notable
increases in synthetic opioids (eg., fentanyl & analogs) and psychostimulants (eg., methamphetamine) in recent
years. The emergence of high-potency novel psychoactive substances (NPSs), such as fentanyl analogs, have
drastically contributed to rising deaths, and adversely impacted treatment engagement and response. The
COVID19 pandemic has further exacerbated the crisis, and recent studies have also highlighted that substantial
disparities exist in SUD treatment, research, interest, and response across different subpopulations, with
racial/ethnic minorities being disproportionately impacted. A key element to tackling the crisis is improved
surveillance. Specifically, there is a need for establishing novel approaches to provide timely insights about the
trends, distributions, and trajectories of the SUD epidemic, as traditional surveillance approaches involve
considerable lags. Many recent studies have identified social media (SM) as useful resources for conducting
SU/SUD surveillance. Many people use SM to discuss personal experiences, provide advice, or seek answers to
questions regarding SU/SUD, resulting in the generation of an abundance of information. Such information can
be characterized, aggregated and analyzed to obtain population- or subpopulation-level insights, at low cost and
in near real time. However, converting SM data into timely, actionable knowledge is non-trivial since the data is
big, complex, and noisy, requiring the development of advanced, automated artificial intelligence methods.
Funded by the National Institute on Drug Abuse, our past work focused specifically on prescription medications
(PM) and established the most sophisticated SM-based data mining pipeline available to date. In response to the
evolution of the SUD epidemic, the proposed project will extend our capabilities to include illicit substances and
develop novel methods to conduct surveillance. Specifically, we will (i) extend our machine learning and natural
language processing (NLP) classification pipeline to automatically classify all SU-related chatter from Twitter
and Reddit (rather than PMs only), (ii) collect and analyze longitudinal timelines of cohorts self-reporting
SU/SUD, (iii) characterize the cohorts in terms of demographic details such as age-group, gender identity, race
and geolocation, (iv) develop advanced NLP-driven methods for detecting NPSs and impacts of SU/SUD, (v)
study short-term and long-term trends and trajectories of the epidemic, (vi) conduct observational studies on
targeted population subsets, including studies focusing on SU and SUD treatment disparities and stigma, and
(vii) disseminate developed methodologies via open source code and aggregated findings publicly via a web-
based dashboard. Implementation of our data-centric methods and successful execution of the project has the
potential to transform SU/SUD surveillance, and complement traditional surveillance measures by providing
close to real time statistics and insights, including those for targeted subpopulations.
美国的流行病(SU)和药物使用障碍(SUD)正在发展
几十年。多年来,处方药和非法药物都涉及过量死亡,显着
最近的合成阿片类药物(例如芬太尼和类似物)和精神刺激剂(例如,甲基苯丙胺)的增加
年。高功能新颖的精神活性物质(NPS)的出现,例如芬太尼类似物
急剧导致死亡的增加,并对治疗的参与和反应产生不利影响。这
Covid19大流行进一步加剧了危机,最近的研究也强调了这一点
在不同亚种群中,SUD治疗,研究,兴趣和反应中存在差异,
种族/族裔少数民族受到过度影响。解决危机的关键要素得到了改善
监视。具体而言,需要建立新颖的方法来提供有关及时的见解
由于传统的监视方法涉及SUD流行的趋势,分布和轨迹
相当大的滞后。许多最近的研究都将社交媒体(SM)确定为进行的有用资源
SU/SUD监视。许多人使用SM讨论个人经验,提供建议或寻求答案
有关SU/SUD的问题,导致大量信息产生。这样的信息可以
以低成本和
接近实时。但是,将SM数据转换为及时的,可行的知识是非平凡的,因为数据是
大型,复杂且嘈杂,需要开发高级自动人工智能方法。
由美国国家药物滥用研究所资助,我们过去的工作专门针对处方药
(PM)并建立了迄今为止可用的最复杂的基于SM的数据挖掘管道。回应
SUD流行的进化,拟议项目将扩展我们的能力,以包括非法物质和
开发进行监视的新方法。具体来说,我们将(i)扩展机器学习和自然
语言处理(NLP)分类管道将自动从Twitter分类所有与SU相关的聊天
和reddit(而不是仅PMS),(ii)收集和分析同类的纵向时间表自我报告
su/sud,(iii)以人口统计细节(例如年龄段,性别认同,种族)来表征人群
和地理位置,(iv)开发了用于检测NPS和SU/SUD的影响的先进NLP驱动的方法,(V)
研究流行病的短期和长期趋势和轨迹,(vi)进行观察性研究
有针对性的人群子集,包括关注SU和SUD治疗差异和污名的研究,以及
(vii)通过开源代码传播开发的方法论,并通过网络公开汇总发现
基于仪表板。我们以数据为中心的方法的实施和项目的成功执行具有
通过提供的潜力改变SU/SUD监视,并通过提供传统监视措施来补充传统的监视措施
接近实时统计和见解,包括针对目标亚群的统计数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abeed H Sarker其他文献
Abeed H Sarker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abeed H Sarker', 18)}}的其他基金
Mining Social Media Big Data for Toxicovigilance: Automating the Monitoring of Prescription Medication Abuse via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法自动监测处方药滥用
- 批准号:
10001871 - 财政年份:2019
- 资助金额:
$ 127.24万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of serum advanced glycation end-products in altering tendon properties with diabetes
血清晚期糖基化终末产物在改变糖尿病肌腱特性中的作用
- 批准号:
10737036 - 财政年份:2023
- 资助金额:
$ 127.24万 - 项目类别:
Determining the impact of ancestry on oropharyngeal cancer biology and treatment response.
确定血统对口咽癌生物学和治疗反应的影响。
- 批准号:
10562456 - 财政年份:2023
- 资助金额:
$ 127.24万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 127.24万 - 项目类别:
Social Isolation and Discrimination as Stressors Influencing Brain-Gut Microbiome Alterations among Filipino and Mexican American
社会孤立和歧视作为影响菲律宾人和墨西哥裔美国人脑肠微生物组变化的压力源
- 批准号:
10850290 - 财政年份:2023
- 资助金额:
$ 127.24万 - 项目类别: