Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
基本信息
- 批准号:10027344
- 负责人:
- 金额:$ 37.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalCell Differentiation processCell NucleusCellsChromatinComputer ModelsDNA Replication TimingDevelopmentDiseaseElementsEnhancersEpigenetic ProcessEvolutionExperimental DesignsGene ExpressionGenomeGenome engineeringGenomicsHumanHuman GenomeImageInstitutesLaboratoriesMinnesotaMissionModelingMusNational Institute of General Medical SciencesPositioning AttributeProtocols documentationPublic HealthRegulator GenesRegulatory ElementResearchResource SharingResourcesSupercomputingSystemTechnologyTestingThree-dimensional analysisTrans-ActivatorsUniversitiesWorkbioinformatics toolcell typeembryonic stem cellexperimental analysisgene functiongenome editinghuman embryonic stem cellinnovationnext generation sequencingpluripotencystem cell differentiationstem cellssuccesstranscription factor
项目摘要
PROJECT SUMMARY
Increasing evidence indicates that three-dimensional (3D) genome organization is required to regulate
gene function and its alterations are associated with many diseases. The genome is organized into
compartments that align with the temporal order of DNA replication (replication timing – RT). However,
little is known about the mechanisms underlying 3D genome organization. Recently, we identified cis
elements of RT and 3D genome organization control (early replicating control elements – ERCEs) in
murine embryonic stem cells. ERCEs are enriched in enhancer epigenetic marks, form strong chromatin
interactions and are bound by pluripotency-specific transcription factors. Moreover, I developed an
integrative model of gene regulatory networks that predicts that co-occupancy of cell type-specific
transcription factors regulate RT. Here, we will study what are the regulatory elements of genome
organization in human differentiated cell types, investigate how trans-acting factors control these
elements, and define how 3D genome organization is remodeled during development and evolution.
Our central hypothesis is that co-occupancy of cell type-specific transcription factors at ERCEs
is required to regulate the 3D genome organization. To test this hypothesis, we will delete and insert
candidate ERCEs into the genome of human differentiated cell types and test their effect on RT, 3D
genome organization and gene expression. We will track ERCE activation using highly-synchronous
human embryonic stem cells differentiation systems. Finally, we will analyze 3D genome organization
evolution using primary cells derived from different species. My laboratory is uniquely positioned to
perform the proposed research with broad expertise in the experimental design and analysis of 3D
genome organization during human cell fate commitment. Moreover, numerous resources available at
the University of Minnesota will facilitate the success of this project, including state-of-the-art
technologies for genome editing (Genome Engineering Shared Resource), next-generation sequencing
(Genomics Center), stem cells (Stem Cell Institute), imaging (Imaging Center) and bioinformatic tools
(Minnesota Supercomputing Institute). We expect that our work will contribute significantly to understand
the fundamental principles of genome organization and its relationship to gene function. The proposed
research combines several innovative aspects such as integrative computational models to predict
regulatory elements of large-scale chromatin organization, genome engineering technologies and
optimized differentiation protocols of human embryonic stem cells to dissect the mechanisms that
control 3D genome organization during development and evolution.
项目摘要
越来越多的证据表明,需要三维(3D)基因组组织来调节
基因功能及其改变与许多疾病有关。基因组被组织成
与DNA复制的时间顺序(复制定时- RT)对齐的区室。然而,在这方面,
关于3D基因组组织的基本机制知之甚少。最近,我们发现
RT和3D基因组组织控制元件(早期复制控制元件-ERCE),
小鼠胚胎干细胞ERCE富含增强子表观遗传标记,形成强染色质
在一些实施方案中,多能性蛋白与多能性特异性转录因子相互作用并被多能性特异性转录因子结合。此外,我开发了一个
预测细胞类型特异性共占据基因调控网络的整合模型
转录因子调节RT。在这里,我们将研究基因组的调节元件是什么
组织在人类分化的细胞类型,调查如何反式作用因子控制这些
元素,并定义了3D基因组组织在发育和进化过程中如何重塑。
我们的中心假设是,ERCE中细胞类型特异性转录因子的共同占据
是调节3D基因组结构所必需的。为了验证这一假设,我们将删除和插入
将候选ERCE插入人分化细胞类型的基因组中,并测试它们对RT、3D
基因组组织和基因表达。我们将使用高度同步的
人胚胎干细胞分化系统。最后,我们将分析3D基因组组织
利用来自不同物种的原代细胞进行进化。我的实验室有着独特的优势
在实验设计和3D分析方面具有广泛的专业知识,
基因组组织在人类细胞命运的承诺。此外,
明尼苏达大学将促进该项目的成功,包括最先进的
基因组编辑技术(基因组工程共享资源),下一代测序
(基因组学中心),干细胞(干细胞研究所),成像(成像中心)和生物信息学工具
明尼苏达超级计算研究所(Minnesota Supercomputing Institute)我们希望我们的工作将有助于理解
基因组组织的基本原则及其与基因功能的关系。拟议
研究结合了几个创新方面,如综合计算模型,以预测
大规模染色质组织的调控元件,基因组工程技术和
优化人类胚胎干细胞的分化方案,以剖析
在发育和进化过程中控制3D基因组组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Carlos Rivera-Mulia其他文献
Juan Carlos Rivera-Mulia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Carlos Rivera-Mulia', 18)}}的其他基金
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10640264 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10424494 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10387585 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10205115 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10796564 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
Regulatory elements of replication timing and 3D genome organization
复制时间和 3D 基因组组织的调控元件
- 批准号:
10808426 - 财政年份:2020
- 资助金额:
$ 37.8万 - 项目类别:
相似海外基金
New antiadipogenic drugs to reduce fibroadipogenic precursor cell differentiation process in DMD
新型抗脂肪形成药物可减少 DMD 中纤维脂肪形成前体细胞的分化过程
- 批准号:
2751293 - 财政年份:2022
- 资助金额:
$ 37.8万 - 项目类别:
Studentship
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
- 批准号:
10550022 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Administrative Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的行政补充
- 批准号:
10606343 - 财政年份:2021
- 资助金额:
$ 37.8万 - 项目类别:
Inferring cell differentiation process based on phylogenetic analysis of histone modifications of human cells
基于人类细胞组蛋白修饰的系统发育分析推断细胞分化过程
- 批准号:
16K07458 - 财政年份:2016
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of Cell Differentiation Process of Entamoeba Encystation
内阿米巴包囊细胞分化过程的阐明
- 批准号:
16K19117 - 财政年份:2016
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of stem cell differentiation process on the basis of epigenetic change
基于表观遗传变化的干细胞分化过程分析
- 批准号:
25560408 - 财政年份:2013
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Histological analysis of T cell differentiation process based on hypermulticolor-hypersensitive fluorescence imaging method
基于超多色-超灵敏荧光成像方法的T细胞分化过程的组织学分析
- 批准号:
22590194 - 财政年份:2010
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frontiers in the clarification of the muscular stem cell differentiation process involved in restoring muscle function
澄清参与恢复肌肉功能的肌肉干细胞分化过程的前沿
- 批准号:
19592131 - 财政年份:2007
- 资助金额:
$ 37.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)