Generating pro-resilient states through individualized circuit read-write therapeutics
通过个性化电路读写疗法产生有弹性的状态
基本信息
- 批准号:10002574
- 负责人:
- 金额:$ 243万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-07 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Anxiety DisordersBehaviorBehavior TherapyBehavioralBrainCalciumChronicDataDeep Brain StimulationDepressed moodDetectionDiseaseEventGoalsHealthIndividualInterventionLifeMachine LearningMajor Depressive DisorderMental DepressionMental disordersOutcomePatternPharmaceutical PreparationsPhasePopulationResistanceSocial BehaviorStressTestingTherapeuticTimeUnited StatesWritingbasecostneural circuitnovelpreventprotective effectreinforced behaviorrelating to nervous systemresilienceresilient behaviorrestorative treatmentsocial stress
项目摘要
Project Summary
Major depressive disorder (MDD) and associated anxiety disorders are the most prevalent and
costly mental illnesses in the United States, with health spending on treatment recently exceeding $71
billion per year. It is now well established that MDD represents a spectrum of disorders, but current
drug based approaches to treatment are temporally nonselective, and their efficacy varies highly across
individuals. In this proposal, we explore a novel individualized intervention strategy, wherein we aim to
prevent and reverse MDD through closed-loop behavioral and neural circuit “tuning”.
While some individuals develop MDD as a result of a stressful life event, other individuals
appear more resilient to stress-induced depression. Our goal in this proposal is to leverage recent
advances in machine learning to identify and detect specific pro-resilient behaviors and patterns of
activation in resilient individuals, and then use these data to “steer” susceptible individuals into
pro-resilient states.
We will accomplish this in two phases. In the first phase, we will test whether modification of
behavior alone can generate a pro-resilient state. We will take a novel quantitative approach to
behavior analysis, using machine learning to identify specific micro behaviors that are unique to
resilient individuals during a chronic social stress. Then, to test whether promoting these behaviors can
provide depression-protective effects, we will then use a closed-loop strategy to detect ongoing
behavior, and reinforce identified pro-resilient micro behaviors. Second, we will perform circuit-wide
calcium recordings in the brain’s subcortical social behavior network and perform unsupervised
detection of pro-resilience circuit motifs across the population. We will then use a novel closed-loop
read-write strategy to optogentically “tune” the circuit dynamics to mimic these pro-resilient states.
We will further explore how these interventions can be accomplished at various time points relative to a
stressful life event (before, during, and after) to test whether circuit intervention can potentially provide
protective or restorative treatment.
These data can potentially be used to develop novel behavior-based therapies for MDD, or to
significantly refine the current use of deep-brain stimulation in order to generate pro-resilient states.
项目摘要
重度抑郁症(MDD)和相关的焦虑症是最普遍的,
美国治疗费用高昂的精神疾病,最近用于治疗的医疗支出超过71美元
每年10亿。现在已经确定MDD代表一系列疾病,但目前
基于药物的治疗方法在时间上是非选择性的,它们的疗效在不同的地区差异很大。
个体在这个建议中,我们探索了一种新的个性化干预策略,我们的目标是
通过闭环行为和神经回路“调整”来预防和逆转MDD。
虽然有些人发展MDD作为一个有压力的生活事件的结果,其他人
对压力引起的抑郁症更有弹性。我们在此提案中的目标是利用最近
机器学习的进步,以识别和检测特定的亲弹性行为和模式,
激活弹性个体,然后使用这些数据来“引导”易感个体进入
支持恢复力的国家
我们将分两个阶段完成这项工作。在第一阶段,我们将测试是否修改
行为本身就能产生一种有利于恢复的状态。我们将采取一种新的定量方法,
行为分析,使用机器学习来识别特定的微观行为,
在长期的社会压力下恢复的个体。然后,为了测试促进这些行为是否可以
提供抑郁保护作用,然后我们将使用闭环策略来检测正在进行的
行为,并加强识别的亲弹性微观行为。第二,我们将在整个电路范围内执行
大脑皮层下社会行为网络中的钙记录,
在整个人群中检测亲弹性电路图案。然后我们将使用一个新的闭环
读-写策略来光遗传地“调谐”电路动态以模仿这些亲弹性状态。
我们将进一步探讨这些干预措施如何在相对于一个时间点的不同时间点完成。
压力生活事件(之前,期间和之后),以测试电路干预是否可能提供
保护或恢复治疗。
这些数据可能用于开发新的基于行为的MDD疗法,或
显著改进目前使用的脑深部电刺激,以产生有利于恢复的状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annegret Lea Falkner其他文献
Annegret Lea Falkner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annegret Lea Falkner', 18)}}的其他基金
Mapping experience-dependent change in a circuit for aggression
绘制攻击性回路中依赖于经验的变化
- 批准号:
10182556 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Mapping experience-dependent change in a circuit for aggression
绘制攻击性回路中依赖于经验的变化
- 批准号:
10550225 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Mapping experience-dependent change in a circuit for aggression
绘制攻击性回路中依赖于经验的变化
- 批准号:
10394392 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Inhibitory Control of Hypothalamic Circuit for Aggression
下丘脑攻击性回路的抑制控制
- 批准号:
9751967 - 财政年份:2018
- 资助金额:
$ 243万 - 项目类别:
Neural mechanisms of distractor filtering in the parietal cortex
顶叶皮层干扰物过滤的神经机制
- 批准号:
7763803 - 财政年份:2009
- 资助金额:
$ 243万 - 项目类别:
Neural mechanisms of distractor filtering in the parietal cortex
顶叶皮层干扰物过滤的神经机制
- 批准号:
8010167 - 财政年份:2009
- 资助金额:
$ 243万 - 项目类别:
Neural mechanisms of distractor filtering in the parietal cortex
顶叶皮层干扰物过滤的神经机制
- 批准号:
7614678 - 财政年份:2009
- 资助金额:
$ 243万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Miscellaneous Programs
Function of cost bias and effect of cognitive behavior therapy on social anxiety in children and adolescents
成本偏差的作用及认知行为治疗对儿童青少年社交焦虑的影响
- 批准号:
23K02970 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined Dialectical Behavior Therapy and Digital Cognitive Behavioral Therapy for Insomnia for Adolescents at High Risk for Suicide: A Pilot RCT
辩证行为疗法和数字认知行为疗法相结合治疗自杀高危青少年的失眠:一项试点随机对照试验
- 批准号:
10643478 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
A Randomized Clinical Trial Comparing Transdiagnostic Behavior Therapy to Disorder-Specific Psychotherapy in the Recovery of Veterans with Social Anxiety Disorder and Comorbid PTSD Symptomatology
一项随机临床试验,比较跨诊断行为疗法与特定障碍心理疗法在患有社交焦虑症和共病 PTSD 症状的退伍军人康复中的作用
- 批准号:
10746930 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Reducing suicide risk among aging caregivers of persons with AD/ADRD: Adapting, implementing, and evaluating Dialectical Behavior Therapy skills training interventions.
降低 AD/ADRD 患者老年护理人员的自杀风险:调整、实施和评估辩证行为治疗技能培训干预措施。
- 批准号:
10730708 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
A Randomized control trial of behavior therapy of tics in Japan. Exploring the behavior model of tics.
日本抽动行为治疗的随机对照试验。
- 批准号:
22K13840 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Behavior Therapy Combined with Buprenorphine for the Treatment of Opioid Use Disorder
行为疗法联合丁丙诺啡治疗阿片类药物使用障碍的作用
- 批准号:
10440820 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:
10429841 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效
- 批准号:
10656415 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Efficacy of digital cognitive behavior therapy for insomnia for the prevention of perinatal depression - supplement
数字认知行为疗法治疗失眠预防围产期抑郁症的疗效 - 补充
- 批准号:
10794868 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别: