Tools for Leveraging High-Resolution MS Detection of Stable Isotope Enrichments to Upgrade the Information Content of Metabolomics Datasets
利用稳定同位素富集的高分辨率 MS 检测来升级代谢组学数据集的信息内容的工具
基本信息
- 批准号:10002192
- 负责人:
- 金额:$ 42.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-17 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsBiochemical PathwayBiologicalCommunitiesCompanionsComplementComputer softwareDataData SetDetectionDevelopmentDiseaseEnvironmentFeedbackInfrastructureIonsIsotope LabelingIsotopesKnowledgeLabelLettersLibrariesMachine LearningManualsMapsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolismMethodsModelingNetwork-basedOutcomePathway interactionsPatternPlantsProcessPublic HealthPublishingRegulationResearchResearch PersonnelResolutionSamplingSeriesSoftware ToolsStable Isotope LabelingSystemTechnologyTestingTimeTissuesTracerValidationWorkbasebiological systemscomparativecomputerized data processingdata standardsexperienceexperimental studyfile formatflexibilityimprovedinnovationinstrumentinstrumentationmetabolic abnormality assessmentmetabolic phenotypemetabolic profilemetabolomicsnovelnovel strategiesopen sourceoperationstable isotopetandem mass spectrometrytooluser-friendlyworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
Recent advances in high-resolution mass spectrometry (HRMS) instrumentation have not been fully leveraged
to upgrade the information content of metabolomics datasets obtained from stable isotope labeling studies. This
is primarily due to lack of validated software tools for extracting and interpreting isotope enrichments from HRMS
datasets. The overall objective of the current application is to develop tools that enable the metabolomics
community to fully leverage stable isotopes to profile metabolic network dynamics. Two new tools will be
implemented within the open-source OpenMS software library, which provides an infrastructure for rapid
development and dissemination of mass spectrometry software. The first tool will automate tasks required for
extracting isotope enrichment information from HRMS datasets, and the second tool will use this information to
group ion peaks into interaction networks based on similar patterns of isotope labeling. The tools will be validated
using in-house datasets derived from metabolic flux studies of animal and plant systems, as well as through
feedback from the metabolomics community. The rationale for the research is that the software tools will enable
metabolomics investigators to address important questions about pathway dynamics and regulation that cannot
be answered without the use of stable isotopes. The first aim is to develop a software tool to automate data
extraction and quantification of isotopologue distributions from HRMS datasets. The software will provide several
key features not included in currently available metabolomics software: i) a graphical, interactive user interface
that is appropriate for non-expert users, ii) support for native instrument file formats, iii) support for samples that
are labeled with multiple stable isotopes, iv) support for tandem mass spectra, and v) support for multi-group or
time-series comparisons. The second aim is to develop a companion software that applies machine learning and
correlation-based algorithms to group unknown metabolites into modules and pathways based on similarities in
isotope labeling. The third aim is to validate the tools through comparative analysis of stable isotope labeling in
test standards and samples from animal and plant tissues, including time-series and dual-tracer experiments. A
variety of collaborators and professional working groups will be engaged to test and validate the software, and
the tools will be refined based on their feedback. The proposed research is exceptionally innovative because it
will provide the advanced software capabilities required for both targeted and untargeted analysis of isotopically
labeled metabolites, but in a flexible and user-friendly environment. The research is significant because it will
contribute software tools that automate and standardize the data processing steps required to extract and utilize
isotope enrichment information from large-scale metabolomics datasets. This work will have an important
positive impact on the ability of metabolomics investigators to leverage information from stable isotopes to
identify unknown metabolic interactions and quantify flux within metabolic networks. In addition, it will enable
entirely new approaches to study metabolic dynamics within biological systems.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doug Allen其他文献
Doug Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doug Allen', 18)}}的其他基金
Tools for Leveraging High-Resolution MS Detection of Stable Isotope Enrichments to Upgrade the Information Content of Metabolomics Datasets
利用稳定同位素富集的高分辨率 MS 检测来升级代谢组学数据集的信息内容的工具
- 批准号:
10242687 - 财政年份:2018
- 资助金额:
$ 42.71万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 42.71万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 42.71万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 42.71万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 42.71万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 42.71万 - 项目类别:
Discovery Projects














{{item.name}}会员




