Tools for Leveraging High-Resolution MS Detection of Stable Isotope Enrichments to Upgrade the Information Content of Metabolomics Datasets
利用稳定同位素富集的高分辨率 MS 检测来升级代谢组学数据集的信息内容的工具
基本信息
- 批准号:10242687
- 负责人:
- 金额:$ 41.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-17 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsBiochemical PathwayBiologicalCommunitiesCompanionsComplementComputer softwareDataData SetDetectionDevelopmentDiseaseEnvironmentFeedbackInfrastructureIonsIsotope LabelingIsotopesKnowledgeLabelLettersLibrariesMachine LearningManualsMapsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolismMethodsModelingNetwork-basedOutcomePathway interactionsPatternPlantsProcessPublic HealthPublishingRegulationResearchResearch PersonnelResolutionSamplingSeriesSoftware ToolsStable Isotope LabelingSystemTechnologyTestingTimeTissuesTracerValidationWorkbasebiological systemscomparativecomputerized data processingdata standardsexperienceexperimental studyfile formatflexibilityimprovedinnovationinstrumentinstrumentationmetabolic abnormality assessmentmetabolic phenotypemetabolic profilemetabolomicsnovelnovel strategiesopen sourceoperationstable isotopetandem mass spectrometrytooluser-friendlyworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
Recent advances in high-resolution mass spectrometry (HRMS) instrumentation have not been fully leveraged
to upgrade the information content of metabolomics datasets obtained from stable isotope labeling studies. This
is primarily due to lack of validated software tools for extracting and interpreting isotope enrichments from HRMS
datasets. The overall objective of the current application is to develop tools that enable the metabolomics
community to fully leverage stable isotopes to profile metabolic network dynamics. Two new tools will be
implemented within the open-source OpenMS software library, which provides an infrastructure for rapid
development and dissemination of mass spectrometry software. The first tool will automate tasks required for
extracting isotope enrichment information from HRMS datasets, and the second tool will use this information to
group ion peaks into interaction networks based on similar patterns of isotope labeling. The tools will be validated
using in-house datasets derived from metabolic flux studies of animal and plant systems, as well as through
feedback from the metabolomics community. The rationale for the research is that the software tools will enable
metabolomics investigators to address important questions about pathway dynamics and regulation that cannot
be answered without the use of stable isotopes. The first aim is to develop a software tool to automate data
extraction and quantification of isotopologue distributions from HRMS datasets. The software will provide several
key features not included in currently available metabolomics software: i) a graphical, interactive user interface
that is appropriate for non-expert users, ii) support for native instrument file formats, iii) support for samples that
are labeled with multiple stable isotopes, iv) support for tandem mass spectra, and v) support for multi-group or
time-series comparisons. The second aim is to develop a companion software that applies machine learning and
correlation-based algorithms to group unknown metabolites into modules and pathways based on similarities in
isotope labeling. The third aim is to validate the tools through comparative analysis of stable isotope labeling in
test standards and samples from animal and plant tissues, including time-series and dual-tracer experiments. A
variety of collaborators and professional working groups will be engaged to test and validate the software, and
the tools will be refined based on their feedback. The proposed research is exceptionally innovative because it
will provide the advanced software capabilities required for both targeted and untargeted analysis of isotopically
labeled metabolites, but in a flexible and user-friendly environment. The research is significant because it will
contribute software tools that automate and standardize the data processing steps required to extract and utilize
isotope enrichment information from large-scale metabolomics datasets. This work will have an important
positive impact on the ability of metabolomics investigators to leverage information from stable isotopes to
identify unknown metabolic interactions and quantify flux within metabolic networks. In addition, it will enable
entirely new approaches to study metabolic dynamics within biological systems.
项目总结/摘要
高分辨率质谱(HRMS)仪器的最新进展尚未得到充分利用
更新从稳定同位素标记研究中获得的代谢组学数据集的信息内容。这
主要是由于缺乏有效的软件工具,用于从HRMS中提取和解释同位素富集
数据集。本申请的总体目标是开发能够实现代谢组学的工具。
社区充分利用稳定同位素来分析代谢网络动态。两个新工具将
在开源OpenMS软件库中实现,该软件库提供了快速
质谱软件的开发和传播。第一个工具将自动执行
从HRMS数据集中提取同位素富集信息,第二个工具将使用此信息,
基于类似的同位素标记模式,将离子峰分组为相互作用网络。将对工具进行验证
使用来自动植物系统代谢通量研究的内部数据集,以及通过
来自代谢组学社区的反馈。这项研究的基本原理是,软件工具将使
代谢组学研究人员解决有关途径动力学和调控的重要问题,
不需要使用稳定同位素就能回答。第一个目标是开发一个软件工具来自动化数据
从HRMS数据集提取和定量同位素体分布。该软件将提供多个
目前可用的代谢组学软件中不包括的关键特征:i)图形交互式用户界面
适合非专业用户,ii)支持本地仪器文件格式,iii)支持
用多种稳定同位素标记,iv)支持串联质谱,和v)支持多基团或
时间序列比较第二个目标是开发一个应用机器学习的配套软件,
基于相关性的算法,根据代谢物的相似性将未知代谢物分组为模块和途径,
同位素标记第三个目的是通过比较分析稳定同位素标记在
从动物和植物组织中提取的测试标准品和样品,包括时间序列和双示踪剂实验。一
各种合作者和专业工作组将参与测试和验证软件,
将根据他们的反馈意见完善这些工具。这项研究非常具有创新性,因为它
将提供所需的先进软件功能,用于同位素的靶向和非靶向分析。
标记的代谢物,但在一个灵活和用户友好的环境。这项研究意义重大,因为它将
贡献软件工具,自动化和标准化所需的数据处理步骤,提取和利用
大规模代谢组学数据集的同位素富集信息。这项工作将具有重要的
对代谢组学研究人员利用稳定同位素信息的能力产生积极影响,
识别未知的代谢相互作用和量化代谢网络内的通量。此外,它将使
研究生物系统内代谢动力学的全新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doug Allen其他文献
Doug Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doug Allen', 18)}}的其他基金
Tools for Leveraging High-Resolution MS Detection of Stable Isotope Enrichments to Upgrade the Information Content of Metabolomics Datasets
利用稳定同位素富集的高分辨率 MS 检测来升级代谢组学数据集的信息内容的工具
- 批准号:
10002192 - 财政年份:2018
- 资助金额:
$ 41.54万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 41.54万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 41.54万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 41.54万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 41.54万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 41.54万 - 项目类别:
Discovery Projects














{{item.name}}会员




