Multiscale Modeling of Wound Healing
伤口愈合的多尺度建模
基本信息
- 批准号:10002331
- 负责人:
- 金额:$ 51.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAdhesionsAffectBehaviorBiochemistryBiologicalBlood PlateletsCell ShapeCellsCellular MorphologyChemotactic FactorsChemotaxisClinicCoagulation ProcessComplexComplicationComputer AnalysisCuesCytoskeletonDataDermalDiabetes MellitusDiseaseExtracellular MatrixF-ActinFibrinFibroblastsHourHumanInvadedKnowledgeLengthLinkMeasuresMechanicsMediatingMembraneMicrofluidicsModelingMolecularMolecular BiologyMonitorMovementMyosin ATPaseMyosin Type IINonmuscle Myosin Type IIAObesityPRKCA genePathway interactionsPatternPlatelet-Derived Growth FactorPositioning AttributeProcessPropertyPublic HealthRecombinantsRegulationResearchSideSignal PathwaySignal TransductionSkin wound healingSourceSpace ModelsStructureSurfaceSurface PropertiesSystemTestingTimeTissuesTotal Internal Reflection FluorescentTractionTraumaUnited StatesVariantWorkWound modelsbiological heterogeneitycell behaviorcell motilitycell typechronic woundcombinatorialcomorbiditydensityexperimental studyimprovedin vivointravital imaginglive cell microscopymacrophagemigrationmolecular scalemulti-scale modelingoutcome predictionplatelet-derived growth factor BBpolymerizationreceptor-mediated signalingrecruitresponserhostemtherapy outcomewoundwound healingwound treatment
项目摘要
PROJECT SUMMARY
Chronic wounds are a major threat to public health and present as a comorbid complication with major
diseases in humans. Although the proper healing of cutaneous wounds requires collective and
coordinated behaviors of multiple cell types, a critical step is the recruitment and function of dermal
fibroblasts, which are directed to invade the wound by gradients of a chemoattractant, platelet-derived
growth factor (PDGF). A handful of biologicals, most notably recombinant PDGF-BB, are currently
approved for treatment of wounds; however, the current treatments lack efficacy in accelerating wound
healing, and consequently they have not gained traction in the clinic. These disappointing results
underscore how poorly the dynamics of wound healing are understood at the tissue scale and the need
to connect knowledge of molecular, cellular, and tissue-level processes to inform and predict outcomes
of therapeutic strategies aimed at improving the rate and fidelity of wound repair. We have been
developing models of fibroblast chemotaxis with consideration of molecular (polarization of signal
transduction), supramolecular (assembly of actomyosin structures), cellular (biased cell movement),
and tissue-level (wound invasion) dynamics, which span disparate time (seconds to weeks) and spatial
(nm to cm) scales. Many challenges remain. First is the lack of a model connecting, in a mechanistic
way, signaling and cytoskeletal dynamics to the mechanics of membrane protrusion/retraction at the
cell's leading edge; we call this the molecules to motility problem (Aim 1). It is motivated by our recent
discoveries that PDGF chemotaxis and migration biased by gradients of extracellular matrix (ECM)
density (haptotaxis) are governed by distinct signaling pathways that affect F-actin dynamics and
mechanics in different ways. This fundamental difference is tied to the second critical need, which we
call the diversity of cues problem (Aim 2). PDGF is only one spatial cue for fibroblast migration, and
hence it is paramount to consider the confluence of chemotactic, haptotactic, and durotactic (gradients
in mechanical stiffness) cues that coexist in wounds. Preliminary modeling work has implicated an
additional form of spatial bias that we propose to explore: the influence of cell shape, or morphotaxis.
The third need is to integrate information about the spatial and biological heterogeneity of the wound.
Fast-moving macrophages secrete PDGF and are thus focal sources of chemoattractant, and ECM
density and stiffness are also expected to vary in space and time. We refer to the relation of
macrophage positions and the dynamic organization of ECM in vivo as the heterogeneous milieu
problem (Aim 3).
项目摘要
慢性伤口是对公共健康的主要威胁,并且作为主要并发症的共病并发症存在。
人类的疾病。虽然皮肤伤口的适当愈合需要集体和
在多种细胞类型的协调行为中,关键的一步是真皮细胞的募集和功能。
成纤维细胞,其通过化学引诱物、血小板衍生的
生长因子(PDGF)。一些生物制剂,最值得注意的是重组PDGF-BB,目前正在开发中。
被批准用于治疗伤口;然而,目前的治疗在加速伤口愈合方面缺乏功效。
愈合,因此他们没有在诊所获得牵引。这些令人失望的结果
强调了在组织尺度上对伤口愈合动力学的理解是多么的贫乏,
将分子、细胞和组织水平过程的知识联系起来,以告知和预测结果
旨在提高伤口修复的速度和保真度的治疗策略。我们一直
考虑到分子(信号极化),开发成纤维细胞趋化性模型
转导),超分子(肌动球蛋白结构的组装),细胞(偏向的细胞运动),
和组织水平(伤口侵入)动态,其跨越不同的时间(数秒至数周)和空间
(nm至cm)刻度。许多挑战依然存在。首先是缺乏一个模型连接,在一个机械的
方式、信号传导和细胞骨架动力学对膜突出/收缩机制的影响
细胞的前沿;我们称之为分子运动问题(目标1)。它的动机是我们最近的
发现PDGF趋化性和迁移受细胞外基质(ECM)梯度的影响,
密度(趋触性)由影响F-肌动蛋白动力学的不同信号通路控制,
机械以不同的方式这一根本区别与第二个关键需求有关,
我们称之为线索多样性问题(目标2)。PDGF只是成纤维细胞迁移的一个空间线索,
因此,考虑趋化性、趋触性和趋硬性(梯度)的汇合是至关重要的
在机械硬度中)在伤口中共存的线索。初步的建模工作表明,
我们打算探索的另一种空间偏差形式:细胞形状或形态趋性的影响。
第三个需要是整合有关伤口的空间和生物异质性的信息。
快速移动的巨噬细胞分泌PDGF,因此是化学引诱物和ECM的焦点来源。
密度和刚度也预期在空间和时间上变化。我们指的是
巨噬细胞的位置和ECM的动态组织在体内作为异质环境
问题(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason M. Haugh其他文献
Effectiveness factor for spatial gradient sensing in living cells
- DOI:
10.1016/j.ces.2006.04.041 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Jason M. Haugh;Ian C. Schneider - 通讯作者:
Ian C. Schneider
Cells get in shape for a crawl
细胞为爬行做好形状准备
- DOI:
10.1038/453461a - 发表时间:
2008-05-21 - 期刊:
- 影响因子:48.500
- 作者:
Jason M. Haugh - 通讯作者:
Jason M. Haugh
Jason M. Haugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason M. Haugh', 18)}}的其他基金
Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
- 批准号:
10185787 - 财政年份:2021
- 资助金额:
$ 51.36万 - 项目类别:
Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
- 批准号:
10370385 - 财政年份:2021
- 资助金额:
$ 51.36万 - 项目类别:
Multi-cue Guidance of Mesenchymal Cell Migration
间充质细胞迁移的多线索引导
- 批准号:
10552599 - 财政年份:2021
- 资助金额:
$ 51.36万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10393140 - 财政年份:2020
- 资助金额:
$ 51.36万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10197961 - 财政年份:2020
- 资助金额:
$ 51.36万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10650313 - 财政年份:2020
- 资助金额:
$ 51.36万 - 项目类别:
NC STATE MOLECULAR BIOTECHNOLOGY TRAINING PROGRAM (MBTP)
北卡罗来纳州立大学分子生物技术培训计划 (MBTP)
- 批准号:
10434091 - 财政年份:2020
- 资助金额:
$ 51.36万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 51.36万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 51.36万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 51.36万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 51.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 51.36万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 51.36万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 51.36万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 51.36万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 51.36万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 51.36万 - 项目类别:
Postdoctoral Fellowships