Subcellular Resolution Light Sheet Microscope with a Large Field of View
大视场亚细胞分辨率光片显微镜
基本信息
- 批准号:10025178
- 负责人:
- 金额:$ 3.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnimal ModelAreaAxonBiologicalBrainCaliberComputer softwareComputersCustomDetectionDimensionsDrosophila genusElectrophysiology (science)FertilizationFilopodiaFluorescence MicroscopyFluorescent DyesFruitGoalsHealthHourHumanImageIndividualInstitutesLarvaLateralLeadLightLightingMaterials TestingMeasurementMeasuresMedicalMethodsMicroscopeMicroscopyMidbrain structureMonitorMorphologic artifactsMuscleNatureNervous system structureNeuraxisNeurologicNeurosciencesPerformancePhotic StimulationProblem SolvingProceduresProcessResearchResolutionSamplingSpeedStructureSubcellular structureSynapsesSystemTechniquesTestingThickTimeZebrafishbasebiological systemscostcost effectivedesignexperimental studyfluorescence microscopeimaging systemimprovedinstrumentlensnervous system disorderneural networknovelnovel strategiesoptical latticespostsynapticreconstructionrelating to nervous systemvirtual
项目摘要
PROJECT SUMMARY
The ability to capture large regions of the neural network in living model organisms such as zebrafish and fruit
flies at a subcellular scale will further advance neurological research. In this project, we aim to provide a
microscopy platform that is able to capture images of a 286 to 300 micron area of the nervous system in living
zebrafish and fruit files at subcellular resolution. We plan to combine super-resolution techniques with light
sheet fluorescence microscopy to accomplish this goal.
Aim 1 combines super-resolution structured illumination microscopy (SR-SIM) with multi-direction
illumination light sheet fluorescence microscopy in a single objective configuration. We expect that the system
should be able to achieve a resolution of 161nm in all lateral directions, and axial resolution of 458nm and 916nm
in 3D SR-SIM mode and 2D SR-SIM mode, respectively. We expect that the proposed method will provide a
highly detailed image of the entire midbrain structure and activity in 6 to 7 week post-fertilization zebrafish
larvae. Aim 2 will achieve isotropic resolution at subcellular level (241nm lateral, 336nm axial) while maintaining
a 286 to 300 micron field of view. We expect that the proposed method will result in the capability to image
dynamics of postsynaptic filopodia across multiple muscle groups over a long period of time (longer than 1 hour).
Aim 3 will develop a novel computer reconstruction algorithm to boost the effective frame rate and alleviate the
artifacts in the resulting image. In the final result, we expect to see a 20% decrease in artifacts and an increase
in speed by a factor of 3.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Liu其他文献
Formal Verification of Process Layer with Petri nets and Z
使用 Petri 网和 Z 对过程层进行形式化验证
- DOI:
10.4156/aiss.vol5.issue1.9 - 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Yang Liu;Jinzhao Wu;Rong Zhao;Hao Yang;Zhiwei Zhang - 通讯作者:
Zhiwei Zhang
An efficient p-ECR move based on maximum likelihood by neighbor joining
基于邻居加入最大似然的高效 p-ECR 移动
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3
- 作者:
Yang Liu;Jian-Fu Li;Mao-Zu Guo, - 通讯作者:
Mao-Zu Guo,
Secure multi-label data classification in cloud by additionally homomorphic encryption
通过额外的同态加密在云中保护多标签数据分类
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yi Liu Yu Luo;Youwen Zhu;Yang Liu;Xingxin Li - 通讯作者:
Xingxin Li
Requirement Verification of Networked Software Goals with Multi-valued Logic
具有多值逻辑的网络化软件目标的需求验证
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yang Liu;Jinzhao Wu;Rong Zhao;Zhiwei Zhang;Hao Yang - 通讯作者:
Hao Yang
Yang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Liu', 18)}}的其他基金
Spatially resolved multiomics profiling of microbes and their host tissue
微生物及其宿主组织的空间分辨多组学分析
- 批准号:
10713736 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Mapping the Cellular Responses to DNA Double-Strand Breaks Using On-Demand CRISPR technologies and High-resolution Fluorescence Microscopy
使用按需 CRISPR 技术和高分辨率荧光显微镜绘制细胞对 DNA 双链断裂的反应
- 批准号:
10715720 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Climate & Health Actionable Research and Translation Center
气候
- 批准号:
10835460 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Climate & Health Actionable Research and Translation Center
气候
- 批准号:
10835461 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Super-Resolution Imaging of Higher-Order Heterochromatin Structure for Early Detection of Lung Carcinogenesis
高阶异染色质结构的超分辨率成像用于早期检测肺癌
- 批准号:
10435645 - 财政年份:2022
- 资助金额:
$ 3.98万 - 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
- 批准号:
10398183 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
- 批准号:
10605199 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Imaging nanoscale chromatin folding in early carcinogenesis
早期致癌过程中纳米级染色质折叠的成像
- 批准号:
10223251 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Three dimensional nanoscale nuclear architecture mapping based taxonomy of precursor lesions for predicting colorectal cancer risk
基于三维纳米级核结构映射的前体病变分类法用于预测结直肠癌风险
- 批准号:
9756510 - 财政年份:2019
- 资助金额:
$ 3.98万 - 项目类别:
Three dimensional nanoscale nuclear architecture mapping based taxonomy of precursor lesions for predicting colorectal cancer risk
基于三维纳米级核结构映射的前体病变分类法用于预测结直肠癌风险
- 批准号:
10590702 - 财政年份:2019
- 资助金额:
$ 3.98万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Continuing Grant