Understanding Selectivity Mechanisms of Network Vulnerability and Resilience in Alzheimer's Disease by Establishing a Neurobiological Basis through Network Neuroscience
通过网络神经科学建立神经生物学基础,了解阿尔茨海默氏病网络脆弱性和恢复力的选择性机制
基本信息
- 批准号:10033069
- 负责人:
- 金额:$ 193.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer’s disease biomarkerAmyloidAmyloid beta-ProteinAreaAtrophicBiological MarkersBrainBrain MappingBrain regionClinicCognitionCognitiveCommunitiesComputer softwareCross-Sectional StudiesDataDevelopmentDiagnosticDisciplineEducationEventEvolutionExhibitsFactor AnalysisGeneticGenetic MarkersGoalsGrainImpaired cognitionIndividualLeadLinkLongitudinal StudiesMeasurementMethodologyMethodsModelingMolecularNerve DegenerationNetwork-basedNeurobiologyNeurodegenerative DisordersNeurofibrillary TanglesNeuronsNeurosciencesOccupationsPathologicPathologyPathway AnalysisPathway interactionsPatternPhenotypePhysicsPositron-Emission TomographyProcessResearchRiskRisk FactorsRoleSenile PlaquesSingle Nucleotide PolymorphismSource CodeStructureSystemTestingThickVertebral columnbasebiophysical analysiscell typecomputerized toolsconnectomeflexibilityfluorodeoxyglucose positron emission tomographygenetic approachgenome wide association studyimprovedmodifiable risknetwork dysfunctionneurocognitive disorderneuroimagingneuron lossneuropathologynormal agingnovelprecision medicinepreservationprogramsresiliencespectral energystatisticstau Proteinstool
项目摘要
Abstract. A plethora of neuroscience and neuroimaging studies have shown that Alzheimer’s disease (AD)
differentially affects certain regions of the brain and specific cell types. Since AD-related pathological events
often propagate trans-neuronally, the selective vulnerability to neuron loss and structure damage also manifest
in the topological patterns of network alteration. Along with many other studies, the research team has found the
strong evidence that (1) AD preferentially affects hub nodes in the network that are densely connected in the
network, and (2) the propagation of neuropathological burdens such as amyloid plaques and neurofibrillary
tangles exhibit unique topological patterns that are governed by the self-organized harmonic bases. However,
the factors underlying this network vulnerability and the molecular mechanism regulating the selectivity in AD
remain unclear. In this regard, we aim to continue the development of cutting-edge network analysis tools with
a greater methodological understanding of how neuropathological events selectively affect certain harmonic
bases (harmonic-selective network vulnerability) and how brain networks counteract AD pathology (network
resilience). In this context, the backbone of this project is a harmonic factor analysis model that can be used as
a neurobiological basis to accurately characterize the whole-brain mapping of neurodegeneration at a system
level, where each harmonic factor explains how the ubiquitous propagation (wave) pattern of neuropathological
event emerges from the particular structural connectome pathway. In Aim 1, we will leverage the well-studied
biophysics concept of power and energy to identify a set of harmonic-selective vulnerable patterns that account
for network vulnerability between normal aging and AD. Also, we will associatethe identified network vulnerability
with couple factors from diverse research fields which include stochastics of selectivity (statistics), system
criticality (physics), network organization (network neuroscience), and cognitive domains (clinic). After that, we
will seek for the putative harmonic-genetics biomarker based on the discovered association between network
vulnerability and genetics factor in Aim 2 and develop a harmonic-genetic approach to capture network resilience
in Aim 3. In Aim 4, we will apply the computational approaches developed in Aim 1-3 to establish (1) a fine-
grain understanding of network vulnerability and resilience across A (amyloid-PET), T (Tau-PET), and N (FDG-
PET and cortical thickness) biomarkers, and (2) a longitudinal underpinning of the dynamics of network
vulnerability by investigating the longitudinal change of AT[N] biomarkers. The diagnostic power of our novel
harmonic-genetics biomarker and resilience will be evaluated in our current AD diagnostic engines. We will
release the software (both binary program and source code), to facilitate the other AD biomarker projects and
the neuroimaging studies of other neurocognitive disorders associated with brain network dysfunction.
抽象的。大量的神经科学和神经影像学研究表明,阿尔茨海默病(AD)
不同地影响大脑的某些区域和特定的细胞类型。由于AD相关病理事件
通常跨神经传播,对神经元损失和结构损伤的选择性脆弱性也表现出来。
网络变化的拓扑模式。沿着许多其他研究,研究小组发现,
强有力的证据表明,(1)AD优先影响网络中密集连接的枢纽节点,
网络,和(2)神经病理学负担的传播,如淀粉样斑块和神经胶质瘤
缠结表现出由自组织谐波基底控制的独特拓扑图案。然而,在这方面,
这种网络脆弱性的潜在因素和调节AD选择性的分子机制
仍然不清楚。在这方面,我们的目标是继续开发尖端的网络分析工具,
对神经病理学事件如何选择性地影响某些谐波的更深入的方法论理解
基础(谐波选择性网络脆弱性)以及大脑网络如何对抗AD病理(网络
弹性)。在这种情况下,该项目的骨干是一个谐波因子分析模型,可用作
神经生物学基础,以准确表征系统中神经变性的全脑映射
水平,其中每个谐波因子解释了神经病理学的普遍传播(波)模式
事件从特定的结构连接体途径出现。在目标1中,我们将充分利用
功率和能量的生物物理学概念,以确定一组谐波选择性脆弱模式,
正常老化和AD之间的网络脆弱性。此外,我们将关联已识别的网络漏洞
与来自不同研究领域的耦合因素,包括选择性随机(统计),系统
关键性(物理学),网络组织(网络神经科学)和认知领域(临床)。之后我们
将根据发现的网络之间的关联寻找推定的和谐遗传学生物标志物,
目标2中的脆弱性和遗传因素,并开发一种和谐遗传方法来捕获网络弹性
目标3。在目标4中,我们将应用目标1-3中开发的计算方法来建立(1)一个精细的
对A(淀粉样蛋白-PET)、T(Tau-PET)和N(FDG-PET)网络脆弱性和弹性的全面理解。
PET和皮质厚度)生物标志物,以及(2)网络动态的纵向基础
通过研究AT[N]生物标志物的纵向变化来评估脆弱性。我们小说的诊断能力
和谐遗传学生物标志物和弹性将在我们目前的AD诊断引擎中进行评估。我们将
发布软件(二进制程序和源代码),以促进其他AD生物标志物项目,
与脑网络功能障碍相关的其他神经认知障碍的神经影像学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guorong Wu其他文献
Guorong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guorong Wu', 18)}}的其他基金
Continuing Tool Development for Longitudinal Network Analysis: Enriching the Diagnostic Power of Disease-Specific Connectomic Biomarkers by Deep Graph Learning
纵向网络分析的持续工具开发:通过深度图学习丰富疾病特异性连接组生物标志物的诊断能力
- 批准号:
10359157 - 财政年份:2021
- 资助金额:
$ 193.99万 - 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10288783 - 财政年份:2021
- 资助金额:
$ 193.99万 - 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
- 批准号:
10461847 - 财政年份:2021
- 资助金额:
$ 193.99万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10463036 - 财政年份:2019
- 资助金额:
$ 193.99万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10370398 - 财政年份:2019
- 资助金额:
$ 193.99万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10582669 - 财政年份:2019
- 资助金额:
$ 193.99万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
10244882 - 财政年份:2019
- 资助金额:
$ 193.99万 - 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
- 批准号:
9923760 - 财政年份:2019
- 资助金额:
$ 193.99万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 193.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)