Combining chemical and computational tools for predictive models of microbiome communities
结合化学和计算工具来构建微生物群落的预测模型
基本信息
- 批准号:10029354
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnaerobic BacteriaAntibioticsBacteriaBiochemical PathwayBiological MarkersBioreactorsBiosensing TechniquesBiosensorCardiovascular DiseasesCellsChemicalsCommunitiesDevicesDiabetes MellitusDiseaseElectrical EngineeringEncyclopediasEngineeringEtiologyFoundationsGoalsHealthHumanHuman MicrobiomeHybridsImmunityIndividualInflammatory Bowel DiseasesLeadMachine LearningMechanicsMediatingMetabolismMethodologyMicrobiologyMissionMolecularMolecular ComputationsMonitorObesityPeptidesPlayPopulationPropertyPublic HealthResearchRoleSourceSystems BiologyTestingTherapeutic InterventionUnited States National Institutes of HealthWorkantimicrobial peptidebasechemical synthesiscomputer sciencecomputerized toolsdesignexperimental studyfecal transplantationfundamental researchgut bacteriagut microbesgut microbiomegut microbiotain vivo evaluationmicrobial communitymicrobiomemicrobiome compositionmicrobiotamolecular dynamicsnervous system disordernetwork modelsnovel therapeuticsnutritionpathogenic bacteriapredictive modelingquantumreal time monitoringscaffoldscreeningsynthetic biologytargeted agenttemporal measurementtool
项目摘要
ABSTRACT
The gut microbiome has a tremendous impact on health and disease, actively contributing to obesity, diabetes,
inflammatory bowel disease, cardiovascular diseases, and several poorly understood neurological disorders.
We do not yet have the necessary tools to precisely probe these microbial communities, though such tools
could unlock extensive benefits to human health. Elucidating the contributions of individual species or consortia
of bacteria would provide a rational basis for understanding microbiota-controlled disease and lead to novel
therapies. To carry out the fundamental research planned in this proposal, we will tackle three major problems:
First, we will build the first set of molecular tools that effectively and precisely modulate the microbiome
bacteria; second, we will analyze the multiscale dynamics of microbial communities; and third, we will construct
an ingestible biosensor for real-time monitoring of microbiome populations. Although antibiotics and fecal
transplants can reconfigure microbial consortia, they do not precisely target individual bacteria. Conversely,
antimicrobial peptides (AMPs) have evolved to selectively attack pathogenic bacteria but do not target
microbiome bacteria, constituting desirable scaffolds for molecular engineering and potential sources of
microbiome-targeting agents. We will develop a new computational peptide design methodology, based on
classical and hybrid-quantum mechanical molecular dynamics (MD) simulations, to create a groundbreaking
assessment of the dynamical and emergent properties of AMPs. Chemical synthesis and large-scale screening
will confirm predicted selectivity against microbiome species, and a machine learning workflow will connect
sequences of individual peptides to their dynamics and activity. We will then apply the synthetic AMPs to
interrogate the human microbiome by selectively removing species during bacterial consortia experiments, to be
carried out in bioreactors, under regular or anaerobic conditions. We will pair our experiments with whole-cell
metabolic network models, providing a systems biology perspective to the analysis of inter-species interactions.
An integrated ingestible biosensing device will be developed to monitor the microbiome by electrochemically
sensing unique biomarkers from gut microbes. This will provide the first real-time measurements of microbiome
composition and will be integrated to our bioreactors for testing, to ultimately be used for in vivo tests. This
work will build the first set of molecular and computational tools for microbiome engineering and will lay the
foundation to address critical gaps in our understanding of the gut micro-environment, and of the contributions
of gut bacteria to the etiology of disease. Grounded in our demonstrated expertise in synthetic biology,
computer science, microbiology, and electrical engineering, this project will provide a computational-
experimental framework for developing a peptide encyclopedia for the gut microbiome, in line with NIH's public
health mission and goals.
摘要
肠道微生物群对健康和疾病有巨大的影响,积极地促进肥胖、糖尿病、
炎症性肠病、心血管疾病和几种鲜为人知的神经疾病。
我们还没有必要的工具来准确探测这些微生物群落,尽管这样的工具
可以为人类健康带来广泛的好处。阐明个别物种或联合体的贡献
将为理解微生物区系控制的疾病提供合理的基础,并导致新的
治疗。为了开展本方案规划的基础研究,我们将解决三大问题:
首先,我们将建立第一套有效和精确地调节微生物组的分子工具
第二,我们将分析微生物群落的多尺度动态;第三,我们将构建
一种用于实时监测微生物群落的可食用生物传感器。虽然抗生素和粪便
移植可以重新配置微生物群体,但它们并不精确地针对单个细菌。相反,
抗菌肽(AMP)已经进化为选择性地攻击致病菌,但不具有靶向性
微生物组细菌,构成分子工程的理想支架和潜在的来源
微生物群靶向制剂。我们将开发一种新的计算多肽设计方法,基于
经典和混合-量子力学分子动力学(MD)模拟,创造了突破性的
AMP的动力特性和紧急特性的评估。化学合成与大规模筛选
将确认对微生物组物种的预测选择性,并将连接机器学习工作流程
单个多肽的序列与其动力学和活性的关系。然后,我们将把合成AMP应用于
在细菌联合实验期间,通过选择性地去除物种来询问人类微生物组,以
在生物反应器中,在常规或厌氧条件下进行。我们将把我们的实验与全细胞配对
代谢网络模型,为分析物种间的相互作用提供了系统生物学的视角。
将开发一种集成的可摄取生物传感装置,用于电化学监测微生物群
从肠道微生物中感知独特的生物标记物。这将提供对微生物组的第一次实时测量
组成,并将被集成到我们的生物反应器进行测试,最终用于体内测试。这
工作将为微生物组工程建立第一套分子和计算工具,并将为
基金会,以解决我们对肠道微环境和贡献的理解中的关键差距
肠道细菌对疾病病因学的影响。基于我们在合成生物学方面的专业知识,
计算机科学、微生物学和电气工程,该项目将提供一种计算-
为肠道微生物组开发多肽百科全书的实验框架,符合NIH的公共标准
健康使命和目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cesar de la Fuente其他文献
Cesar de la Fuente的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cesar de la Fuente', 18)}}的其他基金
Combining chemical and computational tools for predictive models of microbiome communities
结合化学和计算工具来构建微生物群落的预测模型
- 批准号:
10487505 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Combining chemical and computational tools for predictive models of microbiome communities
结合化学和计算工具来构建微生物群落的预测模型
- 批准号:
10251270 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Discovery Grants Program - Individual
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
University Undergraduate Student Research Awards
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)