Magnetic Particle Imaging for High-Resolution Functional Brain Imaging
用于高分辨率功能性脑成像的磁粒子成像
基本信息
- 批准号:10007168
- 负责人:
- 金额:$ 81.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBRAIN initiativeBackBlood VesselsBlood capillariesBrainBrain imagingBreathingCardiacChronic Kidney FailureCollaborationsCore-Binding FactorDevelopmentDevelopment PlansDiscipline of Nuclear MedicineDoseElectroencephalographyElectromagneticsElectronicsFunctional ImagingFunctional Magnetic Resonance ImagingGadoliniumGoalsHalf-LifeHeatingHourHumanHypercapniaImageImaging DeviceImaging TechniquesImaging technologyInflammatoryIodineLabelMagnetic Resonance ImagingMagnetismMapsMeasurementMedical ImagingMethodsMotionNeurosciencesNoiseNorth AmericaPatientsPenetrationPeripheral Nerve StimulationPhysicsPhysiologicalPositron-Emission TomographyProcessPublishingRadiationRadionuclide ImagingRegulationReporterResearchResolutionRodentRodent ModelRoentgen RaysSafetyScanningSignal TransductionStudy of magneticsTissuesTracerTranslationsTraumatic Brain InjuryUnited States National Institutes of HealthX-Ray Computed Tomographyabsorptionbiomaterial compatibilitycerebral blood volumecostdata acquisitiondesignfluorescence imaginghigh resolution imaginghuman tissueimaging modalityimaging studyimaging systemimprovedin vivo evaluationinnovationinsightiron oxideneuroimagingnext generationnovelnovel strategiesoptogeneticsparticleperfusion imagingresponsesafety studysingle photon emission computed tomographyspatiotemporalsuperparamagnetismtomography
项目摘要
Project Summary / Abstract
Magnetic Particle Imaging (MPI) is a novel tomographic imaging modality, with unprecedented contrast,
depth of penetration and sensitivity (1 micromolar sensitivity today; 100 nM soon). MPI is only being
actively researched in a few labs in North America, and in a dozen labs in the EU. Still, MPI already
competes with nuclear medicine in terms of dose-limited sensitivity, and already surpasses scintigraphy in
terms of safety (zero radiation), convenience (no “hot” labeling) and reporter persistence (infinite duration
magnetization instead of half life limited to hours or days). Prof. Conolly's lab at UC Berkeley and his lab's
startup company (Magnetic Insight, Alameda CA) have designed and built nearly all the high-resolution
MPI scanners now in North America. MPI tracers (superparamagnetic iron oxides, SPIOs) are safe for
human use, and some are already approved for human use by the FDA. It is believed that SPIO tracers
are safer for chronic kidney disease (CKD) patients than the standard angiographic tracers, Iodine (X-ray
and X-ray CT) and Gadolinium (MRI).
This proposal is in response to the BRAIN initiative goal to develop new imaging systems that use
disruptive, new approaches to dramatically improve spatiotemporal resolution of current human
neuroimaging. The physics of MPI offers unprecedented vascular contrast at the capillary level with no
background tissue clutter, because human tissues produce zero MPI signal and are completely transpar-
ent. The absence of a background signal could reduce physiologic noise significantly. We have already
studied the brain vascular response to hypercapnia, neuro-inflammatory processes in traumatic brain injury
(TBI), and performed the world's first (unpublished) CBF/CBV measurements in a rodent model.
The only significant physical weakness holding MPI back from human translation is its poor spatial reso-
lution, now about 1.4 mm in a small animal. The resolution in MPI is determined entirely by two parameters:
the tracer magnetic resolution (typically 10 mT), and the selection field gradient (roughly 7 T/m), leading
to roughly 10 mT/(7 T/m) ⇡ 1.4 mm resolution. FDA electromagnetic safety constraints (dB/dt and SAR)
preclude us from increasing the gradient strength further. Hence, to make MPI safe and high resolution, we
must develop far higher resolution MPI tracers. Here we introduce a dramatic advance in MPI technology,
which we call strong interacting MPI (siMPI), which has experimentally demonstrated 10-fold resolution im-
provement, with 1 mT magnetic resolution. The impact of the tracer resolution improvement will be nothing
short of revolutionary: siMPI could reduce the cost of human MPI scanners by 100-fold and improve
sensitivity per gram of tracer by 10-fold! Moreover, siMPI will permit MPI scanning with dramatically mit-
igated FDA electromagnetic safety concerns (dB/dt and SAR). In short, siMPI is precisely disruptive new
approach to dramatically improve spatiotemporal resolution of a current neuroimaging method.
2
项目总结/摘要
磁粒子成像(MPI)是一种新型的断层成像模式,具有前所未有的对比度,
渗透深度和灵敏度(目前灵敏度为1微摩尔;即将达到100 nM)。MPI只是
在北美的几个实验室和欧盟的十几个实验室中进行了积极的研究。尽管如此,MPI已经
在剂量限制敏感性方面与核医学竞争,并且在
安全性(零辐射)、便利性(无“热”标签)和报告者持久性(有限持续时间
磁化而不是半衰期限于数小时或数天)。康诺利教授在加州大学伯克利分校的实验室和他的实验室
一家初创公司(Magnetic Insight,阿拉米达CA)已经设计并制造了几乎所有的高分辨率
MPI扫描仪现在在北美。MPI示踪剂(超顺磁性氧化铁,SPIO)对
人类使用,有些已经被FDA批准用于人类使用。据信SPIO示踪剂
对于慢性肾脏病(CKD)患者,比标准血管造影示踪剂碘(X射线)更安全
和X射线CT)和钆(MRI)。
该提案是为了响应BRAIN倡议的目标,即开发新的成像系统,
颠覆性的新方法,以显着提高当前人类的时空分辨率
神经成像MPI的物理特性在毛细血管水平提供了前所未有的血管对比度,
背景组织杂波,因为人体组织产生零MPI信号并且完全透明,
树人没有背景信号可以显著减少生理噪声。我们已经
研究了创伤性脑损伤后高碳酸血症时的脑血管反应、神经炎症过程
(TBI),并在啮齿动物模型中进行了世界上第一次(未发表)CBF/CBV测量。
阻碍MPI进行人类翻译的唯一明显的物理弱点是其糟糕的空间分辨率。
lution,现在约1.4毫米的小动物。MPI中的分辨率完全由两个参数决定:
示踪剂磁分辨率(通常为10 mT)和选择场梯度(约为7 T/m),
到大约10 mT/(7 T/m)× 1.4 mm分辨率。FDA电磁安全限制(dB/dt和SAR)
阻止我们进一步增加梯度强度。因此,为了使MPI安全和高分辨率,我们
必须开发更高分辨率的MPI示踪剂。在这里,我们介绍了MPI技术的一个巨大进步,
我们称之为强相互作用MPI(siMPI),它已经在实验上证明了10倍的分辨率,
磁分辨率为1 mT。示踪剂分辨率提高的影响将是微不足道的
缺乏革命性:siMPI可以将人类MPI扫描仪的成本降低100倍,
每克示踪剂的灵敏度提高了10倍此外,siMPI将允许MPI扫描与显着mit-
FDA电磁安全问题(dB/dt和SAR)。简而言之,siMPI是一种颠覆性的新技术,
这是一种显著提高当前神经成像方法的时空分辨率的方法。
2
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN M CONOLLY其他文献
STEVEN M CONOLLY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN M CONOLLY', 18)}}的其他基金
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
- 批准号:
10714021 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
In Vivo Therapeutic Cell Tracking by Advanced Magnetic Particle Imaging
通过先进的磁粒子成像进行体内治疗细胞追踪
- 批准号:
9368802 - 财政年份:2017
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging (MPI) for Functional Brain Imaging in Humans
用于人类脑功能成像的磁粒子成像 (MPI)
- 批准号:
9085396 - 财政年份:2014
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging (MPI) for Functional Brain Imaging in Humans
用于人类脑功能成像的磁粒子成像 (MPI)
- 批准号:
8827525 - 财政年份:2014
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8163028 - 财政年份:2011
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8307775 - 财政年份:2011
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8665423 - 财政年份:2011
- 资助金额:
$ 81.51万 - 项目类别:
Magnetic Particle Imaging Angiography for Chronic Kidney Disease Patients
慢性肾病患者的磁粒子成像血管造影
- 批准号:
8477187 - 财政年份:2011
- 资助金额:
$ 81.51万 - 项目类别:
相似海外基金
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
- 批准号:
10931180 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
- 批准号:
10931181 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
- 批准号:
10931182 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
REREQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE NY GENOME CENTER
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与纽约基因组中心的测序核心合同 RFP 75N95022R00031
- 批准号:
10931190 - 财政年份:2023
- 资助金额:
$ 81.51万 - 项目类别:
Organoid quality control using the Brain Initiative Cell Census Network
使用 Brain Initiative Cell Census Network 进行类器官质量控制
- 批准号:
572467-2022 - 财政年份:2022
- 资助金额:
$ 81.51万 - 项目类别:
University Undergraduate Student Research Awards
BRAIN Initiative: Hierarchical Event Descriptors (HED): a system to characterize events in neurobehavioral data
BRAIN Initiative:分层事件描述符 (HED):表征神经行为数据事件的系统
- 批准号:
10480619 - 财政年份:2022
- 资助金额:
$ 81.51万 - 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
- 批准号:
10450824 - 财政年份:2021
- 资助金额:
$ 81.51万 - 项目类别:
Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
- 批准号:
10190025 - 财政年份:2021
- 资助金额:
$ 81.51万 - 项目类别:
BRAIN Initiative: Assessing development of event-related cortical network dynamics
BRAIN Initiative:评估事件相关皮层网络动态的发展
- 批准号:
10190670 - 财政年份:2021
- 资助金额:
$ 81.51万 - 项目类别:
BRAINShare: Sharing Data in BRAIN Initiative Studies
BRAINShare:共享 BRAIN 计划研究中的数据
- 批准号:
10609523 - 财政年份:2021
- 资助金额:
$ 81.51万 - 项目类别: