Application of the principle of symmetry to neural circuitry: From building blocks to neural synchronization in the connectome
对称原理在神经回路中的应用:从构建块到连接组中的神经同步
基本信息
- 批准号:10006982
- 负责人:
- 金额:$ 106.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAbstract AlgebraAlgorithmsAnatomyAreaBrainCaenorhabditis elegansCellsCommunitiesComplexComputer softwareDataData SetDevelopmentFailureGangliaGoalsGrantHeadImageLasersLeadLocomotionMapsMeasuresMethodologyModelingNerveNerve BlockNervous system structureNeuronsNeurosciencesPatternPopulationProcessResearch PersonnelResolutionResource SharingRodentSeriesSoftware ToolsStructureSubgroupSynapsesSystemTailTestingTimeTrustValidationWorkZebrafishbaseconnectomedesignexperimental studyimprovedinformation processinginsightneural circuitprogramsrelating to nervous systemsoftware developmenttheoriestoolusabilityweb site
项目摘要
Project Summary/Abstract
The broad, long-term objective of this grant is to advance a new theoretical approach to identify
synchronized building blocks of neural circuits based on group theory and its application to understand the
permutation symmetries of these circuits. Based on the developed theoretical framework we will validate
our theory by probing brain dynamics at single-cell resolution and in real-time, i.e. sub-second scale, in C.
elegans, which is a system with a fully mapped synapse-resolution connectome. We will produce a software
tool that will allow end-users from the broad neuroscience community to identify and analyze the building
blocks of neural circuits and explore their relation with function. Specific Aims are:
· Specific Aim 1. Develop a generalized theoretical framework of symmetry groups and their unique
decomposition into normal subgroups to identify building blocks made of synchronized neural pop-
ulations in brain networks. Based on our preliminary work in locomotion in C. elegans, we will
evaluate the application of symmetry groups to more complex functions and more complex neural
systems of other species to investigate the relation between symmetries of the connectome and neural
synchronization.
· Specific Aim 2. Verify experimentally the predicted building blocks in C. elegans nervous system
with system-wide Ca2+-imaging experiments. We will develop an experimental program to test the
predictions of the theory on the synchronization of neural populations identified by symmetry groups,
and the subsequent breaking of symmetry and asynchrony tested by single-cell laser ablation.
· Specific Aim 3. Resource sharing plan and software development: Develop software and tools based
on the algorithms developed in Aim 1 and evaluated in Aim 2 to identify the building blocks of
neural circuits to study their synchronization and function. Optimize the usability of the software by
experimentalists (end-user PD Manuel Zimmer) and other researchers for use in the larger scientific
community.
Long term goals: The results of the present study should lead to improve our understanding of the
designing principles of neural circuits and how this structure influences function. Once completed, we trust
that the tools developed by this project will be able to be used by the larger neuroscience community
to study the building blocks of all connectomes. The development of theories of the organization of the
connectome should lead to the inference of general principles regarding network organization applicable to
areas outside neuroscience that include information processing complex systems in general.
项目摘要/摘要
这笔赠款的广泛和长期目标是提出一种新的理论方法来确定
基于群论的神经电路同步积木及其在理解神经网络中的应用
这些回路的置换对称性。基于开发的理论框架,我们将验证
我们的理论通过探测单细胞分辨率和实时的大脑动力学,即亚秒尺度,在C。
Elegans,这是一个具有完全映射的突触分辨率连接体的系统。我们将生产一款软件
该工具将允许来自广泛神经科学界的最终用户识别和分析建筑
神经回路的块,并探索它们与功能的关系。SPECIfic的目标是:
·SPECIfic目标1.发展对称群及其独特的广义理论框架
分解成正常的子群以识别由同步的神经弹出-
在大脑网络中的祝贺。基于我们在线虫运动方面的初步工作,我们将
评价对称群在更复杂的函数和更复杂的神经中的应用
其他物种的系统来研究连接体和神经对称性之间的关系
同步。
·SPECIfic Aim 2.通过实验验证线虫神经系统中预测的构建单元
进行了全系统的钙离子成像实验。我们将开发一个实验程序来测试
对称群识别的神经群体同步理论的预言,fi,
以及随后的对称性破坏和非同步性通过单细胞激光消融来检验。
·Speific Aim 3.资源共享计划和软件开发:开发基于以下内容的软件和工具
关于在目标1中开发并在目标2中评估的算法,以确定
神经电路研究它们的同步性和功能。通过以下方式优化软件的可用性
实验者(最终用户PD曼努埃尔·齐默)和其他研究人员在更大的Sciencefic中使用
社区。
长期目标:本研究的结果应有助于提高我们对
神经电路的设计原理以及这种结构在fl中是如何工作的。一旦完工,我们相信
这个项目开发的工具将能够被更大的神经科学界使用
研究所有连接点的构成要素。企业组织理论的发展
连接体应该导致关于网络组织的一般原则适用于
神经科学以外的领域,一般包括信息处理复杂系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HERNAN MAKSE其他文献
HERNAN MAKSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HERNAN MAKSE', 18)}}的其他基金
Multi-scale approach to disease spreading in social networks
社交网络中疾病传播的多尺度方法
- 批准号:
8728296 - 财政年份:2013
- 资助金额:
$ 106.5万 - 项目类别:
Multi-scale approach to disease spreading in social networks
社交网络中疾病传播的多尺度方法
- 批准号:
8570153 - 财政年份:2013
- 资助金额:
$ 106.5万 - 项目类别:
相似海外基金
Abstract algebra and representation theory
抽象代数和表示论
- 批准号:
2438514 - 财政年份:2020
- 资助金额:
$ 106.5万 - 项目类别:
Studentship
Connections between Advanced and Secondary Mathematics: Exploring the Impact of Abstract Algebra on the Teaching and Learning of Secondary Mathematics
高等数学与中学数学的联系:探讨抽象代数对中学数学教学的影响
- 批准号:
1830121 - 财政年份:2019
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
REU Site: Graph Theory, Combinatorics, and Abstract Algebra
REU 网站:图论、组合学和抽象代数
- 批准号:
1659221 - 财政年份:2017
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
The Culture of Abstract Algebra: Conceptual Languages and Working Styles in Representation Theory in the Second Half of the 20th Century
抽象代数文化:20世纪下半叶表示论的概念语言和工作方式
- 批准号:
1020169 - 财政年份:2010
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Teaching Abstract Algebra for Understanding
教学抽象代数以促进理解
- 批准号:
0737299 - 财政年份:2008
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Enabling Computer Algebra Use in the Undergraduate Abstract Algebra Curriculum
在本科抽象代数课程中启用计算机代数
- 批准号:
0633333 - 财政年份:2007
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Study on systems of partial differential equations applying the abstract algebra
应用抽象代数研究偏微分方程组
- 批准号:
19540202 - 财政年份:2007
- 资助金额:
$ 106.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorics, Discrete Mathematics, Abstract Algebra
组合数学、离散数学、抽象代数
- 批准号:
317136-2005 - 财政年份:2006
- 资助金额:
$ 106.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Computational investigations in abstract algebra
抽象代数的计算研究
- 批准号:
4856-2002 - 财政年份:2006
- 资助金额:
$ 106.5万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics, Discrete Mathematics, Abstract Algebra
组合数学、离散数学、抽象代数
- 批准号:
317136-2005 - 财政年份:2005
- 资助金额:
$ 106.5万 - 项目类别:
Postgraduate Scholarships - Doctoral