IRaman: Breakthrough biomedical microscope with simultaneous infrared and Raman spectroscopy at sub-micron spatial resolution
IRaman:具有亚微米空间分辨率同时红外和拉曼光谱的突破性生物医学显微镜
基本信息
- 批准号:10006670
- 负责人:
- 金额:$ 81.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAntibiotic susceptibilityAntibioticsAntibodiesBacteriaBiocompatible MaterialsBiologicalBiological SciencesBiologyBiomedical ResearchBostonCarbohydratesCellsCellular biologyChemicalsCollaborationsConfocal MicroscopyCrystallizationDataDetectionDiseaseDropsDrug FormulationsDrug StabilityEngineeringEnvironmental ImpactErythrocytesExcipientsFormulationGoalsHealthHealth SciencesHeatingHourHumanImageIndividualIsotope LabelingLabelLaboratoriesLasersLipidsLocationMalariaMeasurementMeasuresMechanicsMetabolicMicroscopeMicroscopicMolecularMolecular StructureMultimodal ImagingNational Institute of Biomedical Imaging and BioengineeringNucleic AcidsOpticsParasitesParticle SizePerformancePharmaceutical PreparationsPharmacologic SubstancePhasePredispositionProcessProteinsRaman Spectrum AnalysisResearchResolutionSamplingScanningScienceScientistSecondary Protein StructureSignal TransductionSmall Business Innovation Research GrantSolubilitySpectrum AnalysisTechniquesTestingTimeTissuesUnited States National Institutes of HealthUniversitiesabsorptionbasebioimagingcontrolled releasecostcrystallinitydesigndetectordrug efficacyextracellular vesiclesimprovedinfrared spectroscopyinsightinstrumentinstrumentationinterestmacromoleculemicroscopic imagingmultimodalitynext generationoptical imagingprototypesoftware developmentspectroscopic imagingsubmicrontemporal measurementtransmission processvibration
项目摘要
This Phase II proposal aims to develop and commercialize IR+Raman a breakthrough instrument that will for the first time
enable simultaneous infrared (IR) and Raman spectroscopy on the same instrument with sub-micron spatial resolution.
This project is well aligned with NIH goals as it incorporates several key thrusts of the National Institute of Biomedical
Imaging and Bioengineering, including optical imaging and spectroscopy, infrared imaging, confocal microscopy, and
multimodal imaging. IR and Raman have gained interest in investigating the composition and molecular structure of
biological materials as they operate label free and are sensitive towards macromolecular composition, such as proteins,
lipids, nucleic acids and carbohydrates, as well as the detection of isotopic labelling of these macromolecules and even
smaller metabolites. Both Infrared and Raman spectroscopies are widely used in analytical laboratories and are often
referred to as “complementary techniques” as they both probe different types of molecular vibrations. For example, IR
spectroscopy is very sensitive to protein secondary structure, whereas Raman is particularly sensitive to lipids as well as
certain amino acids. And in pharma applications Raman is more sensitive to drugs, whereas IR is more sensitive to
excipients (additives) that often have weak Raman signals and/or have large fluorescent backgrounds. Raman can achieve
sub-micron spatial resolution, but IR is limited by the longer excitation wavelengths to spatial resolution ~10 um. This
project aims to overcome this limitation by providing IR and Raman spectroscopy, both at sub-micron spatial resolution.
A compelling recent example of the power of the multimodal combination of IR and Raman in health sciences involved
analysis of malaria parasite infected red blood cells (D. Perez-Guaita et al Vib. Spectrosc. 91, 46-58 (2017)). The research
showed “that the combination of both techniques provides complementary information not evident” using the techniques
individually. This research was performed however using a painstaking process of separately and sequentially measuring
the exact same cell locations in two different instruments, requiring substantial additional time and cost. This proposal
aims to develop an instrument that makes simultaneous IR and Raman measurements simple, robust, and routine.
This project will leverage successful Phase I research to develop and commercialize a new optical microscope-based
platform that can perform simultaneous IR and Raman on the same instrument. The project will involve a collaboration
between proposer Photothermal Spectroscopy Corp and Dr. Ji-Xin Cheng (Boston University) and Dr. Lynne Taylor
(Purdue). The team at photothermal will design and build a next generation IR+Raman instrument to overcome key
limitations and expand the capabilities over the prototype developed in Phase I. The two year project will develop alpha
and beta prototype units for applications testing at Photothermal’s applications lab in Santa Barbara, CA, and will install a
beta unit in the labs of Prof. Lynne Taylor at Purdue University, with a focus on demonstrating applicability of IR+Raman
to key problems in pharmaceutical sciences. Photothermal scientists will also collaborate closely with Prof. Cheng’s group
at Boston University in cell biology, specifically related to investigate antibody susceptibility at the single bacterium level.
The beta IR+Raman will also be used to investigate other applications in cells/tissue and microplastics characterization.
该第二阶段提案旨在开发和商业化IR+拉曼,这是一种突破性的仪器,
在同一台仪器上同时进行红外(IR)和拉曼光谱分析,空间分辨率达到亚微米。
该项目与NIH的目标保持一致,因为它包含了国家生物医学研究所的几个关键目标。
成像和生物工程,包括光学成像和光谱学,红外成像,共聚焦显微镜,
多模态成像红外光谱和拉曼光谱在研究有机硅的组成和分子结构方面已引起人们的兴趣。
生物材料由于其无标记地操作并且对大分子组合物,例如蛋白质,
脂质、核酸和碳水化合物,以及检测这些大分子的同位素标记,
较小的代谢物。红外光谱和拉曼光谱都广泛用于分析实验室中,并且经常被用于分析。
称为“互补技术”,因为它们都探测不同类型的分子振动。例如ir
光谱学对蛋白质二级结构非常敏感,而拉曼对脂质以及
某些氨基酸在制药应用中,拉曼对药物更敏感,而IR对药物更敏感。
赋形剂(添加剂)通常具有弱的拉曼信号和/或具有大的荧光背景。拉曼可以实现
亚微米空间分辨率,但IR受限于较长的激发波长,空间分辨率为~10 μ m。这
该项目旨在通过提供亚微米空间分辨率的IR和拉曼光谱来克服这一限制。
最近一个引人注目的例子表明,在健康科学中,红外和拉曼的多峰组合具有强大的功能,
分析疟原虫感染的红细胞(D. Perez-Guaita等人光谱分析91,46-58(2017))。研究
表明“两种技术的结合提供了互补的信息不明显”使用的技术
单独地然而,这项研究是通过一个艰苦的过程进行的,
在两个不同的仪器中的完全相同的细胞位置,需要大量的额外时间和成本。这项建议
旨在开发一种仪器,使同时进行红外和拉曼测量简单、可靠和常规。
该项目将利用成功的第一阶段研究开发和商业化一种新的光学显微镜为基础的
可以在同一台仪器上同时进行IR和拉曼的平台。该项目将涉及一个合作
光热光谱公司与Ji-Xin Cheng博士(波士顿大学)和Lynne Taylor博士之间的对话
(Purdue)。光热团队将设计和建造下一代IR+拉曼仪器,以克服关键的
限制,并扩大了在第一阶段开发的原型的能力。这个为期两年的项目将开发alpha
和beta原型单位的应用程序测试在光热的应用实验室在圣巴巴拉,加利福尼亚州,并将安装一个
普渡大学Lynne Taylor教授实验室的测试单元,重点展示IR+拉曼的适用性
制药科学中的关键问题。光热科学家也将与郑教授的小组密切合作
在波士顿大学的细胞生物学,特别是在单个细菌水平上研究抗体敏感性。
β IR+拉曼也将用于研究细胞/组织和微塑料表征中的其他应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Prater其他文献
Craig Prater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Prater', 18)}}的其他基金
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
- 批准号:
10543927 - 财政年份:2021
- 资助金额:
$ 81.71万 - 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR)-breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR)——同步荧光显微镜和亚微米红外光谱的突破
- 批准号:
10253663 - 财政年份:2021
- 资助金额:
$ 81.71万 - 项目类别:
Fluorescence Enhanced Photothermal Infrared Spectroscopy (FE-PTIR) - breakthrough for simultaneous fluorescence microscopy and sub-micron IR spectroscopy
荧光增强光热红外光谱 (FE-PTIR) - 同步荧光显微镜和亚微米红外光谱的突破
- 批准号:
10693270 - 财政年份:2021
- 资助金额:
$ 81.71万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 81.71万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 81.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 81.71万 - 项目类别: