A new theory of population coding in the cerebellum
小脑群体编码的新理论
基本信息
- 批准号:10005617
- 负责人:
- 金额:$ 124.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAlgorithmsAnatomyAnimalsBehaviorBehavioralBrainCallithrixCell NucleusCellsCerebellar NucleiCerebellumClassificationCodeComplexComputational algorithmComputer softwareConsumptionDataDetectionDevelopmentEffectivenessElectrodesElectrophysiology (science)EventEyeFrequenciesHandHumanIndividualInferiorLabelLearningLesionMacacaManualsMeasurementMeasuresMethodsModelingMotionMotorMovementMusNeuroanatomyNeuronsOlives - dietaryOutputPatternPopulationPopulation TheoryProbabilityProblem SolvingProceduresProcessPurkinje CellsSaccadesSensorySmooth PursuitStatistical MethodsStructureTechniquesTestingTimeVisualWorkWristarm movementautomated algorithmawakebasedensityexperimental studyeye velocityimprovednovel strategiesopen sourcepredictive modelingpreferencerelating to nervous systemresponsetemporal measurementtheoriesvector
项目摘要
A theory of population coding in the cerebellum
In order to move accurately, the brain relies on internal models that predict the sensory consequences of motor
commands. Evidence for this idea comes from human behavioral experiments [1-7] and animal lesion studies [8-
11], suggesting that the critical structure for forming internal models is the cerebellum. However, in the cerebellum
it is often difficult to relate spiking activity of individual Purkinje cells (P-cells) with behavior: while for some tasks
like smooth pursuit eye movements the activity of P-cells is a simple function of eye velocity [12], for most other
movements such as saccades [13,14], wrist movements [15], or arm movements [16-19], it is difficult to associate
activity of individual P-cells to behavior. Anatomy of the cerebellum suggests that P-cells organize in small groups,
together projecting onto a single output nucleus neuron [20]. This anatomy implies that the fundamental
computational unit of the cerebellum is not a single P-cell, but a population of P-cells that together converges onto
a single output neuron. Thus, population coding in the cerebellum has a specific anatomical meaning: P-cells that
converge onto a single output neuron together encode an aspect of behavior [21]. The critical problem is to
identify the membership of each population in the living brain. Recently, we demonstrated a way to approach this
problem [22]: P-cells that share the same complex spike tuning likely belong to the same population. However,
identification of complex spike tuning is exceptionally difficult: complex spikes are rare events that have variable
waveform durations. Indeed, the current approach relies on manual labeling of complex spikes, something that
cannot be scaled to multi-contact probes. Here, three labs with expertise in marmosets, mice, and macaques have
come together to develop algorithms that automate detection and attribution of complex spikes. These algorithms
focus on the frequency-domain classification of spikes, and will be tested on high density multi-contact probes.
Together, the algorithms and experimental procedures should significantly improve the ability of neuroscientists to
tackle the question of population coding in the cerebellum, ultimately resulting in better understanding of how the
cerebellum learns to precisely control movements of our body.
小脑群体编码理论
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REZA SHADMEHR其他文献
REZA SHADMEHR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REZA SHADMEHR', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 124.86万 - 项目类别:
Continuing Grant