Deployable 3D-printed Cellular Communities for Characterizing Bacterial Social Cues and Chemical Warfare
可部署的 3D 打印细胞群落,用于表征细菌社交线索和化学战
基本信息
- 批准号:10005373
- 负责人:
- 金额:$ 18.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAntibiotic ResistanceBacteriaBehaviorCell LineCellsChemical EngineeringChemical WarfareChemicalsCleaved cellCommunitiesComplexCuesDetectionDevelopmentDiseaseEcosystemEnvironmentFaceFiberFiber OpticsFluorescenceGastrointestinal tract structureGenetic TranscriptionGeographyGoalsGrantHeterogeneityImageImmobilizationImmune responseIn VitroInfectionMammalian CellMethodologyMethodsMicroscopeMicroscopicModelingMolecularNitric OxideOpticsOxidation-ReductionOxygenPathogenicityPhenotypePlayPopulationPopulation SizesPositioning AttributeProteinsPseudomonas aeruginosaReactive Oxygen SpeciesReporterReportingResolutionResourcesRespiratory SystemRoleShapesSignal TransductionStaphylococcus aureusStructureSystemTechnologyTimeTime StudyValidationVariantVirulenceVirulence FactorsWorkbacterial communitybasecell behaviorcell communitychronic infectioncombatcomparativedensityfightinghigh riskin vitro Modelin vivoinstrumentationinterestmacrophagemicrobialmicrobial communitymicrobiomeoptical fiberpathogenic bacteriaquorum sensingresponsesocialspatiotemporaltraittransmission processwound
项目摘要
Project Summary
The chemical interplay between cells within pathogenic microbial communities has profound effects on
phenotypic states; numerous chemical signals, virulence factors, and redox-active species influence both the
virulence potential of bacterial constituents and the response of immune cells. Detailed understanding how
“micro-geography” impacts cellular behavior via transmission of social cues, chemical warfare, and other system
attributes such as oxygen and resource limitation would therefore offer potentially valuable new long-term
strategies key for combatting infection. A capability to precisely position small, bacterial aggregates having
defined physical and phenotypic attributes within microbial communities of interest would enable the study
time-variant spatial interactions between cells, such as those that may occur in the spread and progression of
infections, as well as dynamic reorganization within established microbiomes.
Here, we propose development of a technology platform for investigating sociomicrobiology and other
chemically based attributes in pathogenic microbial communities in which bacterial colonies and, in some
instances, cells from mammalian lines of defined population sizes/densities, shapes, arrangements, and
sociomicrobiological status will be organized in porous protein-based microcontainers 3D printed on
maneuverable optical fiber tips. This optrode platform will provide capabilities both for reporting on and
controllably perturbing, microbial environments of interest by facile chemical exchange through microcontainer
walls and will acquire detailed molecular information on microscopic ecosystems via detection of fluorescent
transcriptional reporters and other cellular probes, as well as engineered chemical reporters for nitric oxide and
reactive oxygen species incorporated in microcontainer walls. As validation of the platform, we will evaluate
spatiotemporal attributes for transmission of quorum sensing and population-dependent antibiotic resistance
bi-directionally between fiber-mounted 3D-printed Pa aggregates and model microbiome communities
maintained as a physically stationary ensemble of aggregates in visually accessible cultures maintained on an
inverted microscope system. As proof-of-concept for extending methodologies to delivery of bacterial
communities to in vivo environments, we will 3D fabricate defined populations of Pa on large-format imaging
fiber-optic bundles. Phenotypic interplay will be evaluated between fiber-mounted populations and stationary
cultures of Pa/Sa. If successful, capabilities that derive from these high-risk, high-benefit studies will have
medium- and long-term applications to various in vitro models and in vivo microbomes, including chronic
infections in wounds, gastrointestinal tract, and respiratory system.
项目摘要
病原微生物群落内细胞之间的化学相互作用对微生物的生长有着深远的影响。
表型状态;许多化学信号,毒力因子和氧化还原活性物质影响这两个
细菌成分的毒力潜力和免疫细胞的反应。详细了解如何
“微观地理学”通过社会线索、化学战和其他系统的传递来影响细胞行为。
因此,氧气和资源限制等属性将提供潜在的有价值的新的长期
对抗感染的关键策略。精确定位小的细菌聚集体的能力,
在感兴趣的微生物群落中确定的物理和表型属性将使研究
细胞之间的时变空间相互作用,例如那些可能发生在细胞扩散和进展中的相互作用。
感染,以及建立微生物组内的动态重组。
在这里,我们建议开发一个技术平台,用于研究社会微生物学和其他
在致病微生物群落中,细菌菌落,在某些情况下,
例如,来自具有确定种群大小/密度、形状、排列和
社会微生物学状态将被组织在3D打印的多孔蛋白质微容器中,
可拆卸的光纤尖端。该光电管平台将提供报告和
通过微容器的简易化学交换可控地扰动感兴趣的微生物环境
并将通过检测荧光物质来获取微观生态系统的详细分子信息。
转录报告基因和其它细胞探针,以及用于一氧化氮的工程化学报告基因,
反应性氧物质结合在微容器壁中。作为平台的验证,我们将评估
群体感应和群体依赖性抗生素耐药性传播的时空属性
纤维安装的3D打印Pa聚集体和模型微生物群落之间的双向
作为聚集体的物理上固定的集合体保持在视觉上可访问的培养物中,
倒置显微镜系统作为将方法扩展到细菌递送的概念验证,
社区在体内环境中,我们将3D制造大格式成像上的Pa定义种群
光纤束将评价纤维固定群体和固定群体之间的表型相互作用。
文化的Pa/Sa。如果成功,从这些高风险、高收益研究中获得的能力将具有
中期和长期应用于各种体外模型和体内微生物,包括慢性
伤口、胃肠道和呼吸系统感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric V. Anslyn其他文献
Ein Chemosensor zur Bestimmung von Citrat in Getränken
格特兰肯 (Getränken) 的 Citrat 最佳化学传感器
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. Metzger;Eric V. Anslyn - 通讯作者:
Eric V. Anslyn
Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System
- DOI:
doi.org/10.1002/anie.201711602 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Cailing Ni;Daijun Zha;Hebo Ye;Yu Hai;Yuntao Zhou;Eric V. Anslyn;Lei You - 通讯作者:
Lei You
Scaling-up molecular logic to meso-systems via self-assembly
通过自组装将分子逻辑扩展到介观系统
- DOI:
10.1038/s41467-025-58379-0 - 发表时间:
2025-03-28 - 期刊:
- 影响因子:15.700
- 作者:
Ze-Qing Chen;Brian Daly;Chao-Yi Yao;Hannah S. N. Crory;Yikai Xu;Ziwei Ye;H. Q. Nimal Gunaratne;Ayumi Kimura;Seiichi Uchiyama;Steven E. J. Bell;Eric V. Anslyn;A. Prasanna de Silva - 通讯作者:
A. Prasanna de Silva
Erkennung von Anionen in einem bicyclischen Cyclophan durch Wasserstoffbrückenbindungen zu deren π‐System ‐ unerwartete Selektivität für Nitrat
在 einem bicyclischen Cyclophan durch Wasserstoffbrückenbindungen zu deren π 系统 ‐ unerwartete Selektivität für Nitrat
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
A. Bisson;Vincent M. Lynch;Mary‐Katherine C. Monahan;Eric V. Anslyn - 通讯作者:
Eric V. Anslyn
DER MECHANISMUS DER RNA-SPALTUNG DURCH UMESTERUNG : EINE VEREINHEITLICHENDE ANALYSE DES AKTUELLEN DISKUSSIONSSTANDES
RNA-SPALTUNG DURCH UMESTERUNG 的机制:对当前讨论情况进行分析
- DOI:
10.1002/ange.19971090505 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Denise M. Perreault;Eric V. Anslyn - 通讯作者:
Eric V. Anslyn
Eric V. Anslyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric V. Anslyn', 18)}}的其他基金
Sensor arrays based on molecularly imprinted polymers for diagnosis of Sjogren's syndrome
基于分子印迹聚合物的传感器阵列用于诊断干燥综合征
- 批准号:
9245475 - 财政年份:2016
- 资助金额:
$ 18.53万 - 项目类别:
Sensor arrays based on molecularly imprinted polymers for diagnosis of Sjogren's syndrome
基于分子印迹聚合物的传感器阵列用于诊断干燥综合征
- 批准号:
9357588 - 财政年份:2016
- 资助金额:
$ 18.53万 - 项目类别:
Refining & Implementing Supramolecular Methods for HTS of EE & Concentration
精制
- 批准号:
7987195 - 财政年份:2006
- 资助金额:
$ 18.53万 - 项目类别:
Refining & Implementing Supramolecular Methods for HTS of EE & Concentration
精制
- 批准号:
8326184 - 财政年份:2006
- 资助金额:
$ 18.53万 - 项目类别:
Refining & Implementing Supramolecular Methods for HTS of EE & Concentration
精制
- 批准号:
8142187 - 财政年份:2006
- 资助金额:
$ 18.53万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 18.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 18.53万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 18.53万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 18.53万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 18.53万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 18.53万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 18.53万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 18.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 18.53万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 18.53万 - 项目类别:
Standard Grant