A MAP Kinase that controls the post-meiotic phase of the yeast life cycle.
一种控制酵母生命周期减数分裂后阶段的 MAP 激酶。
基本信息
- 批准号:10005813
- 负责人:
- 金额:$ 1.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiochemical GeneticsBiological ModelsC-terminalCandidate Disease GeneCatalytic DomainCell NucleusCell divisionCellsChIP-seqChromosome SegregationChromosomesClinicalCompanionsComplexCongenital AbnormalityDNADNA Polymerase IIDNA biosynthesisDNA-Binding ProteinsDNA-Directed RNA PolymeraseDataData SetDefectDevelopmentDiploid CellsDiploidyEngineeringEpitopesEquationEventFamily memberFollow-Up StudiesGametogenesisGenesGeneticGenetic RecombinationGenetic TranscriptionGerm CellsHaploid CellsHaploidyHealthHome environmentHomologous GeneHumanImmunofluorescence ImmunologicInfertilityInstitutionLaboratoriesLife Cycle StagesMAP Kinase GeneMalignant NeoplasmsMeiosisMethodsMitogen-Activated Protein KinasesMitosisModificationMolecular GeneticsMonitorMorphogenesisMothersMutationNamesNuclearNuclear AccidentsNutrientOrganismPathway interactionsPatternPermeabilityPhasePhiladelphiaPhospho-Specific AntibodiesPhosphorylationPhosphotransferasesPrincipal InvestigatorProcessPromoter RegionsProphaseProteinsRNARNA Polymerase IIReproduction sporesResearchS PhaseSaccharomyces cerevisiaeSaintsSerineSpontaneous abortionStarvationStudentsSystemTestingTrainingUniversitiesWorkYeast Model SystemYeastsanalogbioinformatics toolcrosslinkdevelopmental diseasegenetic approachinhibitor/antagonistinsightmacromoleculeprogramspromoterpurine analogrecruitresponsesabbaticalsegregationspatiotemporalundergraduate research
项目摘要
Project Summary/Abstract: Meiosis is the specialized form of cell division that generates haploid gametes
from diploid precursors. It is essential for the life-cycles of almost all eukaryotic organisms. Understanding
meiotic regulatory mechanisms is relevant to human health since defects in meiosis cause infertility, cancer,
and birth defects. Baker's yeast is an outstanding model system to study meiotic development. In response to
starvation, diploid cells enter meiotic development and generate four haploid cells within the mother cell. Early
events include meiotic DNA replication, homolog pairing, and genetic recombination. After the completion of
genetic recombination, cells undergo 2 rounds of chromosome segregation without an intervening S-phase.
After the second meiotic division (MII), the haploid products are encased in spore walls that protect the
haploids from environmental insults. Although yeast has taught us much about meiotic S-phase, prophase, and
the meiotic divisions, much less is known about the processes that occur after MII has taken place. One
reason we know so little about the post-meiotic phase of this program is that the spore walls are experimentally
impenetrable; extracting macromolecules under native conditions or monitoring molecules using
immunofluorescence methods has until recently been nearly impossible. Previous work in the sponsor's
laboratory has identified a meiosis-specific MAPK named Smk1 that controls the post-meiotic program of spore
formation. This led to the discovery that Smk1 activates the expression of late meiosis-specific genes, which
are uniquely expressed after the spore wall has assembled. This proposal takes advantage of engineered
yeast strains that produce permeable spore walls so that the intracellular and nuclear events that occur during
the late stages of meiotic development can be studied. The proposal also takes advantage of engineered
forms of Smk1 that are sensitive to cell-permeable purine analogs (smk1-as) that can be used to turn Smk1 on
and off. Mutations that permeabilize the spore wall with smk1-as are combined in a genetic background that
undergoes meiosis in a highly synchronous manner, and this will be used to define the complete set of late
meiosis-specific genes that are regulated by Smk1 (aim 1). We will also test the hypothesis that Smk1 is
recruited to late meiosis-specific transcriptional promoters (aim 2). Preliminary data suggests that Smk1
phosphorylates the C terminal domain of RNA polymerase, and we will also test this hypothesis and whether
these modifications take place at late meiosis specific genes as they are being transcribed (aim 3). Studies of
how meiotic events are regulated in yeast may provide insights into human gametogenesis, which have clinical
implications in solving infertility, miscarriages, and developmental disorders. The principal investigator (Julia
Lee-Soety) intends to conduct this work during her sabbatical leave in Dr. Edward Winter's laboratory at the
Thomas Jefferson University in Philadelphia. Beyond the project period, the PI plans to continue follow-up
studies with undergraduate research students at her home institution (Saint Joseph's University).
项目概要/摘要:减数分裂是产生单倍体配子的细胞分裂的特殊形式
从二倍体前体。它对几乎所有真核生物的生命周期都是必不可少的。理解
减数分裂调节机制与人类健康有关,因为减数分裂缺陷会导致不育,癌症,
出生缺陷。面包酵母是研究减数分裂发育的一个优秀的模式系统。响应于
在饥饿时,二倍体细胞进入减数分裂发育并在母细胞内产生四个单倍体细胞。早期
事件包括减数分裂DNA复制、同源配对和遗传重组。完成后
在遗传重组中,细胞经历2轮染色体分离而没有居间的S期。
在第二次减数分裂(MII)后,单倍体产物被包裹在孢子壁中,
从环境的侮辱。虽然酵母已经教会了我们很多关于减数分裂S期,前期,
减数分裂,更少的是知道的过程后发生的MII已经发生。一
我们对这个程序的减数分裂后阶段知之甚少的原因是孢子壁是实验性的。
不可穿透;在天然条件下提取大分子或使用
免疫荧光方法直到最近几乎是不可能的。以前在赞助商的
一个实验室已经鉴定出一种名为Smk 1的减数分裂特异性MAPK,它控制孢子的减数分裂后程序
阵这导致了Smk 1激活晚期减数分裂特异性基因的表达的发现,
是在孢子壁组装后唯一表达的。该提案利用了工程设计的优势
酵母菌株产生可渗透的孢子壁,从而使细胞内和细胞核事件发生在
可以研究减数分裂发育的后期阶段。该提案还利用了工程
Smk 1的形式,对可用于开启Smk 1的细胞渗透性嘌呤类似物(smk 1-as)敏感
然后离开用smk1-as渗透孢子壁的突变在遗传背景中结合,
以高度同步的方式进行减数分裂,这将被用来定义一套完整的晚期减数分裂。
减数分裂特异性基因,由Smk1(目的1)。我们还将检验Smk 1是
募集到后期减数分裂特异性转录启动子(AIM 2)。初步数据表明,Smk 1
磷酸化RNA聚合酶的C末端结构域,我们也将测试这一假设,
这些修饰发生在减数分裂后期特定基因转录时(aim 3)。研究
酵母中减数分裂事件的调节方式可能为人类配子发生提供见解,
在解决不孕症、流产和发育障碍方面的意义。首席研究员(Julia)
Lee-Soety)打算在她的休假期间在爱德华·温特博士的实验室进行这项工作。
费城的托马斯杰斐逊大学。在项目期后,PI计划继续随访
在她的家乡机构(圣约瑟夫大学)与本科研究生一起学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JULIA Y LEE-SOETY其他文献
JULIA Y LEE-SOETY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JULIA Y LEE-SOETY', 18)}}的其他基金
Werner Syndrome Family Proteins & Telomere Recombination
维尔纳综合征家族蛋白质
- 批准号:
6815814 - 财政年份:2003
- 资助金额:
$ 1.13万 - 项目类别:
Werner Syndrome Family Proteins & Telomere Recombination
维尔纳综合征家族蛋白质
- 批准号:
6692385 - 财政年份:2003
- 资助金额:
$ 1.13万 - 项目类别:
Werner Syndrome Family Proteins & Telomere Recombination
维尔纳综合征家族蛋白质
- 批准号:
6920690 - 财政年份:2003
- 资助金额:
$ 1.13万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 1.13万 - 项目类别:
Discovery Projects