Decoding and Rewiring Enzymatic Redox Signal Transduction Pathways
酶促氧化还原信号转导途径的解码和重新布线
基本信息
- 批准号:10028392
- 负责人:
- 金额:$ 35.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteBacteriaBindingBioinorganic ChemistryBiologicalBiologyCarbon MonoxideCardiovascular DiseasesCell physiologyCellsChemicalsChronicDNADegenerative DisorderDiseaseEnvironmentEnzymatic BiochemistryEquilibriumEventFutureGenus MycobacteriumGoalsHealthHeme IronHomeostasisHumanLaboratoriesLifeMaintenanceMalignant NeoplasmsMetalloproteinsMetalsMethodologyMolecularNitric OxideOxidation-ReductionPhenotypePhosphotransferasesPhysiologicalPhysiological ProcessesPlantsPreventionProcessProtein EngineeringReactionReactive Oxygen SpeciesReagentResearchSideSignal PathwaySignal TransductionSignal Transduction PathwaySpecificitySpectrum AnalysisStimulusStressStructureSystemWorkZincbasedesignheme anervous system disorderpeptidomimeticsprogramsresponse
项目摘要
PROJECT SUMMARY
Cells have evolved intricate enzymatic machineries that help them exist and survive redox stresses in their
microenvironment. Enzymatic redox sense, signal, and response mechanisms are critical for a diverse set of
physiological processes in all forms of life ranging from bacteria and plants to humans. Unlike other cellular
signaling processes, redox signaling involves highly reactive reagents such as nitric oxide (NO), carbon
monoxide (CO), and reactive oxygen species that raise concerns regarding the potential of these reagents for
participation in other non-specific reactions. Yet, such side reactions are uncommon under physiological
conditions suggesting high specificity and selectivity of enzymatic redox signal transduction pathways. In turn,
we ask the following two pertinent questions: a) What makes redox signaling pathways so specific? and b) Can
we rationally and systematically rewire redox signal transduction pathways to re-instate/disrupt cellular redox
balance? These questions have been largely overlooked from the chemical biology and bioinorganic chemistry
perspective, despite the fact that redox imbalances are responsible for a variety of diseases ranging from
neurological disorders to cancer. Our lab focuses on these paradigm shifting questions and the long-term goal
of our research program is to develop molecular strategies that rewire sensing/signaling mechanisms of
biological redox reagents involved in human health and disease. In this proposal, we focus on DosS-DosR
enzymatic signaling pathway in mycobacteria that senses NO/CO in its microenvironment and signals cellular
transition into a non-replicating, dormant state. The DosS-DosR system has three components – a heme iron
sensing domain that binds to NO/CO, a zinc-dependent signaling kinase domain that communicates the binding
event and a response domain that binds to DNA and turns on dormancy. Using our combined expertise in
metalloprotein structure-function, protein engineering, enzymology and spectroscopy, we will devise mutagenic,
metal-substitution and peptidomimetic-based approaches to rewire DosS-DosR sense, signal and response
domains. Proof-of-concept studies conducted in our laboratory have demonstrated successful rewiring of DosS-
DosR redox sensing function via structure-guided rational protein design. Future work will unravel the molecular
mechanisms of redox rewiring and its implications on cellular physiology and phenotypic responses. Our findings,
will not only provide a fundamental understanding of cellular redox sense/signal/response mechanisms, but also
inform future methodologies for treatment and prevention of redox-related diseases.
Health Relevance: Maintenance of a normal intracellular redox status is crucial for regulating physiological
responses. Any imbalance in this status results in a variety of acute and chronic degenerative diseases such as
cancer, cardiovascular and neurological disorders. Our research program aims to design molecular approaches
that rewires the ability of cells to sense and signal redox changes in their environment. These approaches could
be applied to re-instate cellular redox homeostasis in diseased states.
项目摘要
细胞已经进化出复杂的酶机制,帮助它们在氧化还原压力下生存。
微环境。酶促氧化还原感觉、信号和响应机制对于各种不同的生物学过程是至关重要的。
从细菌、植物到人类的所有生命形式的生理过程。与其他蜂窝
在信号传导过程中,氧化还原信号传导涉及高反应性试剂,例如一氧化氮(NO)、碳
一氧化碳(CO)和活性氧物质,这引起了人们对这些试剂用于
参与其他非特异性反应。然而,这种副作用在生理条件下是不常见的。
条件表明酶促氧化还原信号转导途径的高特异性和选择性。反过来,
我们提出了以下两个相关的问题:a)是什么使氧化还原信号通路如此特异?和B)可以
我们合理和系统地重新布线氧化还原信号转导通路,以恢复/破坏细胞的氧化还原
平衡?这些问题在化学生物学和生物无机化学中很大程度上被忽视了
尽管事实上,氧化还原失衡是造成各种疾病的原因,
从神经系统疾病到癌症我们的实验室专注于这些范式转变的问题和长期目标
我们的研究计划的一部分是开发分子策略,
生物氧化还原试剂参与人类健康和疾病。在本提案中,我们关注DosS-DosR
分枝杆菌中的酶信号通路,其在微环境中感知NO/CO,并向细胞
进入非复制的休眠状态DosS-DosR系统有三个组成部分-血红素铁
一个与NO/CO结合的传感结构域,一个与NO/CO结合的锌依赖性信号激酶结构域,
事件和与DNA结合并开启休眠的响应域。利用我们在以下领域的综合专长
金属蛋白结构-功能,蛋白质工程,酶学和光谱学,我们将设计诱变,
基于金属取代和肽模拟的重新连接DosS-DosR感觉、信号和响应的方法
域.在我们实验室进行的概念验证研究已经证明了DoS的成功重新布线-
DosR氧化还原传感功能通过结构指导的合理蛋白质设计。未来的工作将揭开分子
氧化还原重新布线的机制及其对细胞生理学和表型反应的影响。我们的发现,
将不仅提供对细胞氧化还原感测/信号/响应机制的基本理解,而且
为今后治疗和预防氧化还原相关疾病的方法提供信息。
健康相关性:维持正常的细胞内氧化还原状态对于调节生理功能至关重要。
应答这种状态的任何失衡都会导致各种急性和慢性退行性疾病,
癌症、心血管和神经系统疾病。我们的研究计划旨在设计分子方法
重新连接细胞的能力,感知和信号的氧化还原变化,在他们的环境。这些方法可以
用于恢复患病状态下的细胞氧化还原稳态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambika Bhagi其他文献
Ambika Bhagi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ambika Bhagi', 18)}}的其他基金
Decoding and Rewiring Enzymatic Redox Signal Transduction Pathways
酶促氧化还原信号转导途径的解码和重新布线
- 批准号:
10645129 - 财政年份:2020
- 资助金额:
$ 35.91万 - 项目类别:
Decoding and Rewiring Enzymatic Redox Signal Transduction Pathways
酶促氧化还原信号转导途径的解码和重新布线
- 批准号:
10408133 - 财政年份:2020
- 资助金额:
$ 35.91万 - 项目类别:
Decoding and Rewiring Enzymatic Redox Signal Transduction Pathways
酶促氧化还原信号转导途径的解码和重新布线
- 批准号:
10389521 - 财政年份:2020
- 资助金额:
$ 35.91万 - 项目类别:
Decoding and Rewiring Enzymatic Redox Signal Transduction Pathways
酶促氧化还原信号转导途径的解码和重新布线
- 批准号:
10214641 - 财政年份:2020
- 资助金额:
$ 35.91万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
- 批准号:
22K05515 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
- 批准号:
20K22561 - 财政年份:2020
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
- 批准号:
19H03466 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
- 批准号:
18K07109 - 财政年份:2018
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
- 批准号:
18K05405 - 财政年份:2018
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
- 批准号:
MR/P022197/1 - 财政年份:2017
- 资助金额:
$ 35.91万 - 项目类别:
Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
- 批准号:
15K20591 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
- 批准号:
BB/K019600/1 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
- 批准号:
23658175 - 财政年份:2011
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research