Cellular organization, division, and differentiation in an ancient, genetically reduced bacterium
一种古老的基因减少细菌的细胞组织、分裂和分化
基本信息
- 批准号:10029358
- 负责人:
- 金额:$ 31.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnimal ModelAreaBacteriaCell Differentiation processCell ShapeCell SizeCell WallCell divisionCell physiologyCellsCellular StressChlamydiaChlamydiaceaeComplexDevelopmentElementsEnvironmentExhibitsFive-Year PlansGenomeInvestigationKnowledgeLifeMetabolicMicrobeModelingMolecularMolecular MachinesOrganismPeptidoglycanPhysiological ProcessesProcessRoleSeriesStressStructureSystemWorkmemberresponse
项目摘要
Project Summary / Abstract
In this proposal we aim to define the molecular mechanisms of division and differentiation in a phylum that
consists entirely of bacterial species that live in osmotically stable, intracellular environments. During
adaptation to intracellular life, microbes often exhibit a significant reduction in their genome size, resulting in
the loss of metabolic and structural elements that are not required for life within a host cell. The bacterial cell
wall, composed of peptidoglycan, protects most bacterial species from osmotic stress and is essential for cell
division. Peptidoglycan also determines a bacterial cell’s shape, and by directing its synthesis and degradation
microbes can effectively control cell size and differentiation between developmental forms. Nascent
peptidoglycan biosynthesis is spatially and temporally restricted within bacterial cells via two known molecular
complexes: the MreB complex, which is primarily associated with bacterial cell wall synthesis, and the FtsZ
complex, which is associated with septal peptidoglycan synthesis required during cell division. Members of the
Chlamydiae do not encode FtsZ and have long been thought to completely lack peptidoglycan. We recently
discovered that several members of the Chlamydiaceae synthesize peptidoglycan but do not use it to form a
canonical cell wall. Instead, these microbes utilize only septal peptidoglycan in their replicative forms, which is
maintained, paradoxically, by an MreB complex. Here we propose a series of studies to investigate how
members of the Chlamydiaceae temporally and spatially restrict peptidoglycan synthesis throughout the
division process, efficiently controlling cell size, division, and the transition between developmental forms.
Over the next five years we plan to increase our understanding of these fundamental processes by focusing on
three major areas of investigation: 1) Identifying the mechanisms that direct and influence peptidoglycan
synthesis and degradation in the absence of FtsZ, 2) characterizing polar localizing features present in
Chlamydia and assessing their role in orienting peptidoglycan and the cell division complex, and 3)
establishing the critical factors that influence bacterial cell size in an osmotically stable environment during the
course of normal development and in response to cell stress. Genetically reduced microbes are attractive
models for identifying the fundamental components of essential physiological processes. These planned
studies will elucidate not only how genetically reduced microbes regulate cell size and divide in osmotically
stable environments, but also illuminate the inherent versatility of the broadly conserved molecular complexes
underlying these process.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE WARREN LIECHTI其他文献
GEORGE WARREN LIECHTI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE WARREN LIECHTI', 18)}}的其他基金
Cellular organization, division, and differentiation in an ancient, genetically reduced bacterium
一种古老的基因减少细菌的细胞组织、分裂和分化
- 批准号:
10414941 - 财政年份:2020
- 资助金额:
$ 31.9万 - 项目类别:
Cellular organization, division, and differentiation in an ancient, genetically reduced bacterium
一种古老的基因减少细菌的细胞组织、分裂和分化
- 批准号:
10621325 - 财政年份:2020
- 资助金额:
$ 31.9万 - 项目类别:
Cellular organization, division, and differentiation in an ancient, genetically reduced bacterium
一种古老的基因减少细菌的细胞组织、分裂和分化
- 批准号:
10210413 - 财政年份:2020
- 资助金额:
$ 31.9万 - 项目类别:
Characterization of peptidoglycan from the human pathogen Chlamydia trachomatis
人类病原体沙眼衣原体肽聚糖的表征
- 批准号:
9055546 - 财政年份:2015
- 资助金额:
$ 31.9万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 31.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 31.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 31.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 31.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 31.9万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




