Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons

海马锥体神经元的钾通道和树突功能

基本信息

项目摘要

Isomerase regulation of potassium channel trafficking and function. Kv4.2 channels are key determinants of dendritic excitability and integration, spike timing-dependent plasticity and long-term potentiation. Downregulation of Kv4.2 channel expression occurs following hippocampal seizures and in epilepsy suggesting A-type currents as targets for novel therapeutics. To identify Kv4.2 binding proteins, staff scientist Jiahua Hu employed a tandem affinity purification approach (TAP)to isolate the Kv4.2 protein complex from hippocampal neurons. Mass-spectrometry analysis identified known proteins such as KChIP family members and DPP6/10. The TAPMS assay also identified an isomerase as a binding partner of Kv4.2. The binding was confirmed by brain co-immunoprecipitation, co-expression in HEK293T cells, and peptide pull down in vitro. The isomerase binds to a specific Kv4.2 site, and the association is regulated by neuronal activity and seizure. To determine if and how the isomerase regulates the trafficking of Kv4.2, postbac Travis Tabor generated bungarotoxin binding site-tagged Kv4.2 at the second extracellular loop for visualizing Kv4.2 in live neurons. The bungarotoxin binding site-tagged Kv4.2 showed similar channel properties as WT Kv4.2 in biochemical and electrophysiological assays. The isomerizing activity may also regulate Kv4.2 binding to its auxiliary subunits. These data suggested that the isomerase plays a role in regulating Kv4.2 function. To further study the physiological function of isomerase and Kv4.2 channel, we generated a knockin (KI) mouse in which the isomerase binding site is specifically abolished using Crispr-Cas9 techniques. These mice are viable and appear normal. They showed normal initial learning and memory in Morris Water Maze. However, these Kv4.2 KI mice showed better reversal learning in Morris Water Maze than WT. In the operant reversal lever press, the KI mice displayed improved reversal learning. These data strongly support the idea that activity-dependent regulation of Kv4.2 plays an important role in cognitive flexibility. Cognitive flexibility is the ability to appropriately adjust ones behavior according to a changing environment. Cognitive flexibility is impaired in various neurodevelopmental disorders such as autism spectrum disorder (ASD). In light of these findings, postdoc Cole Malloy investigated how isomerization of Kv4.2 impacts neuronal function using whole-cell patch clamp electrophysiology in acute hippocampal slices. He utilized current-clamp recordings to detect alterations in action potential firing properties in the knock-in mice. Pharmacological manipulation of isomerase and kinase activity addressed the dependence of phosphorylation and conformation change induced by the isomerase to gain further insights into the molecular cascade impacting Kv4.2 function. Furthermore, given the behavioral results showing altered cognitive flexibility, experiments investigating synaptic function and plasticity in the KI mice are underway. Ca2+ regulation of potassium channel function. In addition to pore forming Kv4 subunits, native hippocampal A-type currents require non-conducting modulatory auxiliary subunits known as K-channel interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). Both KChIPs and DPLPs work in concert to enhance Kv4 function. Interestingly, in recent unpublished work we have identified a mechanism by which Kv4.2 current density is regulated by Ca2+ via R-type voltage gated Ca2+ channels (Cav2.3). Ca2+ regulation of Kv4.2 channels occurs despite an apparent lack of the structural determinants of the canonical Ca+-activated K+ channels. Proteomic and subcellular localization studies suggest, that Cav2.3-containing voltage gated calcium channels could be a potential calcium source for a modulatory effect on Kv4.2-mediated A-type K currents (IA) in CA1 hippocampal neurons. Postdoc Jakob Gutzmann established that apical dendrites from CA1 pyramidal neurons in Cav2.3 KO animals show a severe reduction in the typical somato-dendritic gradient of Kv4.2 current density, and used 2-photon calcium-imaging to investigate the functional consequence to this lack of dendritic potassium-current in the Cav2.3 KO animals. Further investigation revealed that individual action potentials showed profound changes in waveform. DPP6 plays a role in Brain Development, Function and Behavior DPP6 is well known as an auxiliary subunit of Kv4.2 which has been associated with numerous developmental and intellectual disorders and neuropsychiatric pathologies, especially ASD. We have reported previously, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. This year we found DPP6 knockout mice are impaired in learning and memory. Results from the Morris water maze, T-maze, Objects spatial location, Novel Object Recognition and Cued and fear conditioning tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. We continued to study DPP6-KO mice in behavioral tasks, and found that DPP6-KO mice are impaired in hippocampus dependent learning and memory and have lower brain weight (Lin et al 2018). To determine which regions effected the smaller brain size, we performed in vivo MRI to scan the live mouse brain, the results showed live DPP6-KO mice display significantly decreased volume specifically in the hippocampus and Cerebellum. Our findings indicate DPP6-loss drives microcephaly and learning and memory impairment in DPP6-KO mice, hallmarks of Alzheimers Disease. We continue to investigate DPP6 in neurodegeneration. Kv4.2 trafficking MD/PhD student Adriano Bellotti has discovered quantitative and qualitative differences in microtubule-based transport of Kv4.2 in axons versus dendrites. He characterized these differences by recording time series of over 500 neurites, and has validated an unexpected result using mathematical models of cargo transport. He developed a deterministic model that corroborates differences in cargo frequency and a stochastic model that validates differences in puncta speed, superdiffusivity, and frequency in axons vs dendrites.
异构体酶对钾通道运输和功能的调控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dax A Hoffman其他文献

Dax A Hoffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dax A Hoffman', 18)}}的其他基金

Potassium Channels and Dendritic Function in Hippocampa*
海马中的钾通道和树突功能*
  • 批准号:
    6813986
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    8736870
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    8351173
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    10266491
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal
海马钾通道和树突功能
  • 批准号:
    7334128
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    8941488
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    10913896
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    7968661
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    7594222
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:
Potassium Channels and Dendritic Function in Hippocampal Pyramidal Neurons
海马锥体神经元的钾通道和树突功能
  • 批准号:
    9550351
  • 财政年份:
  • 资助金额:
    $ 178.03万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 178.03万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了