How is Fullness Sensed in the Urinary Bladder?
如何感觉到膀胱充盈?
基本信息
- 批准号:10034865
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsAttentionBasic ScienceBehaviorBladderBladder DysfunctionBrainCationsClinicalConsciousCouplingDataDiseaseEventFibroblastsFutureGeneticGiant CellsGoalsGrantHeartImageImage AnalysisImaging TechniquesIon ChannelKnockout MiceLeadLifeLiquid substanceLower urinary tractMeasuresMediatingMethodologyModelingMusNerveNeuraxisOutputOveractive BladderPainPathologyPharmacologyPhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsProcessPropertyRegulationReporterReportingRoleSensorySignal TransductionSiteSmooth MuscleSmooth Muscle MyocytesStimulusStretchingSurfaceSystemTechniquesTimeTranslatingUrineUrodynamicsUrothelial CellUrotheliumWorkafferent nervecell motilitycell typecomparativein vivoinsightinterstitial cellintravesicalmechanical propertiesmechanotransductionmouse modelnovelnovel imaging techniqueoptogeneticspressurereal time monitoringresponsesignal processingtool
项目摘要
SUMMARY
In normal day-to-day life, the sense of urinary bladder fullness is conveyed to the central nervous system such
that voiding of urine is not too frequent, and retaining urine is not too painful. Much attention has focused on
attempting to treat urinary bladder dysfunctions however, to understand any disorder of the lower urinary tract
an essential physiological question must be addressed, and that is: How is bladder fullness sensed?
Amazingly, the basic physiological mechanisms for sensing bladder fullness remain elusive. Exploring this
fundamental question will be the focus of the current proposal, which should deepen our understanding of this
process, providing important insights into the fundamental mechanisms involved in translating bladder fullness
into afferent information. We propose the novel overarching concept that local changes in mechanical properties
of the urinary bladder wall during filling are what drives sensory outflow. Importantly, pressure, per se, does not
drive afferent nerve activity. Rather, it is the local deformation of the bladder wall that is the stimulus for afferent
nerve activity. During filling, local excitation of detrusor smooth muscle (DSM) spreads spatially to cause small
transient contractions of the bladder wall, called micromotions. Micromotions lead to angular distortions and
localized changes in wall tension of the bladder wall. It is this localized change in wall tension that we believe
triggers afferent nerve activity to sense bladder filling. This proposal gets at the heart of determining how fullness
is sensed in the urinary bladder, without speculating about cell types involved in signaling (urothelial cells,
interstitial cells, fibroblasts, etc). This project utilizes numerous novel techniques and approaches, such as our
pentaplanar reflected image macroscopy platform that enables real-time monitoring of micromotions on the entire
surface of the bladder. We have devleoped cutting edge imaging methodologies and signal processing
algorithms to quantify bladder motility and Ca2+ signaling dynamcis. In Aim 1, we will determine the basis for
local excitation of DSM during bladder filling. We will use imaging techniques on mice expessing genetically
encoded Ca2+ indicators to study how the excitatiliby of the DSM affects the spatial spread of Ca2+ signals. Aim
2 explores spatial-temporal relationships between excitation and the rate/extent of angular distortions, and
afferent nerve activity during filling. We will use simultaneous recordings of DSM Ca2+ activity, bladder pressure
and afferent nerve activity. Finally, in Aim 3, we will investigate the basis for mechano-sensing by afferent nerves
in the urinary bladder and the role of Piezo1 and Piezo2 stretch-sensitive cation channels. Importantly, we will
characterize bladder function in Piezo2 knockout mice in vivo. Through completion of this project, we will gain
fundamental insights into the mechanisms whereby physical forces during filling are sensed by the urinary
bladder. Once we gain a full understanding of these processeses, we will be better suited to model, study, and
treat bladder dysfunctions.
总结
在正常的日常生活中,膀胱充盈的感觉被传递到中枢神经系统,
排尿不太频繁,尿潴留不太痛苦。很多注意力都集中在
然而,试图治疗膀胱功能障碍,以了解下尿路的任何疾病,
必须解决一个基本的生理问题,即:膀胱充盈是如何感觉到的?
令人惊讶的是,感知膀胱充盈的基本生理机制仍然难以捉摸。探索这个
一个根本性的问题将是目前提案的重点,这将加深我们对这一点的理解
过程,提供了重要的见解,涉及翻译膀胱充盈的基本机制
转化为传入信息我们提出了新的总体概念,即机械性能的局部变化
膀胱壁在充盈过程中的收缩是驱动感觉流出的原因。重要的是,压力本身并不
驱动传入神经活动。相反,膀胱壁的局部变形是传入神经的刺激。
神经活动在充盈过程中,逼尿肌平滑肌(DSM)的局部兴奋在空间上扩散,引起小的收缩。
膀胱壁的短暂收缩,称为微动。微动导致角变形,
膀胱壁张力的局部变化。我们认为正是这种局部的血管壁张力变化
触发传入神经活动以感知膀胱充盈。该提案是确定丰满度的核心
在膀胱中被感知,而不推测参与信号传导的细胞类型(尿路上皮细胞,
间质细胞、成纤维细胞等)。该项目采用了许多新的技术和方法,如我们的
五平面反射图像宏观平台,可实时监控整个系统的微动
膀胱的表面。我们开发了尖端的成像方法和信号处理
量化膀胱运动和Ca 2+信号动态的算法。在目标1中,我们将确定
膀胱充盈期间DSM的局部激发。我们将使用成像技术对小鼠进行基因表达,
编码的Ca~(2+)指示剂研究DSM的兴奋性如何影响Ca~(2+)信号的空间分布。目的
图2探索了激励与角失真的速率/程度之间的时空关系,以及
充盈期间的传入神经活动。我们将同时记录DSM Ca2+活性、膀胱压力
和传入神经活动。最后,在目标3中,我们将研究传入神经机械感知的基础
在膀胱和Piezo1和Piezo2拉伸敏感阳离子通道的作用。重要的是,我们将
在体内表征Piezo2敲除小鼠的膀胱功能。通过这个项目的完成,我们将获得
对充盈过程中的物理力被泌尿系统感知的机制的基本见解
膀胱一旦我们对这些过程有了充分的了解,我们将更适合建模,研究和
治疗膀胱功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Heppner其他文献
Thomas Heppner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Heppner', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Research Grant