Regulation of ß(1,3)-glucan exposure in Candida albicans
白色念珠菌中α(1,3)-葡聚糖暴露的调节
基本信息
- 批准号:10034337
- 负责人:
- 金额:$ 51.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-08 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesAntifungal AgentsAntifungal TherapyArchitectureBiologyCandidaCandida albicansCarbohydratesCaspofunginCell WallCellsCellular biologyChitinCytolysisDecision MakingDetectionEpitopesExhibitsFeedbackGenesGeneticGenetic EpistasisGenetic TranscriptionGlucansGlycoproteinsGoalsHealthHumanHyperactive behaviorImmuneImmune responseImmune systemImmunologic ReceptorsIn VitroInfectionLifeLoxP-flanked alleleMAP Kinase ModulesMacrophage-1 AntigenMammalsMannansMasksMediatingMitogen-Activated Protein KinasesMolecularMusMycosesPathway interactionsPatient-Focused OutcomesPharmaceutical PreparationsPolymersProteinsRegulationResearchServicesSignal PathwaySignal TransductionStressSystemic infectionTechniquesTechnologyTestingTransgenic MiceVirulencecell typedectin 1experimental studyfungusgenetic approachglucan synthasemacrophagemortalitymutantneutrophilnoveloverexpressionreceptortooltraittranscription factorupstream kinase
项目摘要
Candida albicans and related Candida spp. are responsible for ~400,000 invasive infections/year, which have
an ~50% mortality rate. A crucial virulence trait of C. albicans, and other fungi, is the ability to diminish their
detection by their hosts. The cell wall carbohydrate ß(1,3)-glucan is an important epitope that the immune
systems of humans and other mammals use to recognize and respond to fungal infections through receptors
like Dectin-1 and complement receptor 3 (CR3). Fungi like C. albicans diminish their detection from immune
cells through masking ß(1,3)-glucan under an outer layer of mannosylated glycoproteins (mannan). The
virulence of C. albicans is compromised in conditions where ß(1,3)-glucan is more exposed (unmasked). For
example, echinocandin antifungal drugs, like caspofungin, inhibit ß(1,3)-glucan synthase and cause cell lysis in
vitro, but also induce exposure of ß(1,3)-glucan, even at sublethal concentrations. In addition, a number of
mutants that exhibit increased exposure of ß(1,3)-glucan have decreased virulence. However, a major
research challenge is to understand the impact of ß(1,3)-glucan exposure on virulence during caspofungin
treatment. It has been difficult to differentiate between cidal effects of the drug and the impact of ß(1,3)-glucan
exposure. A challenge closely related to this is that the mechanism by which caspofungin causes ß(1,3)-glucan
exposure is unknown. We have found that we can decouple caspofungin's cidal effects from unmasking,
which allows us to address both of these challenges. This can be done by activating caspofungin-responsive
signaling pathways using a genetic approach rather than the drug, and we have discovered that at least one of
these pathways causes unmasking. The Cek1 MAP kinase (MAPK) pathway is activated by caspofungin
treatment, and we have discovered that genetic activation of this cascade causes unmasking when
hyperactivated, even in the absence of caspofungin. However, unlike the drug, activation of this pathway does
not compromise viability. Thus, we can meet the second challenge by using this pathway to dissect the
mechanism through which unmasking occurs. Moreover, we can meet the first challenge by using the Cek1
pathway as tool to probe how the immune system responds to unmasking during mouse systemic infections
because, unlike caspofungin, it is not cidal. We will address these challenges in three specific aims. In Aim 1
we will elucidate the mechanisms by which the Cek1 cascade regulates ß(1,3)-glucan exposure. There are two
main transcription factors downstream of Cek1 and we will determine how the pathway chooses a particular
one (Cph1) using a combination of genetic, epistasis, and cell biology techniques that will identify how Cek1-
Cph1 is activated to cause unmasking. In Aim 2 we will determine how transcriptional targets of Cek1-Cph1
alter the cell wall to cause unmasking. In Aim 3, we will elucidate how exposure of ß(1,3)-glucan causes
decreased virulence in mice. We will use transgenic mice to define how neutrophils, macrophages, Dectin-1
and/or CR3 participate to reduce the virulence of unmasked C. albicans.
白色念珠菌和相关念珠菌属。每年造成约40万例侵入性感染,
50%的死亡率C.白色念珠菌和其他真菌,是能够减少他们的能力,
被他们的主人发现。细胞壁碳水化合物β(1,3)-葡聚糖是机体免疫反应的重要表位
人类和其他哺乳动物的系统用于通过受体识别和响应真菌感染
如Dectin-1和补体受体3(CR 3)。真菌如C.白色念珠菌减少了免疫检测
通过在甘露糖基化糖蛋白(甘露聚糖)外层下掩蔽β(1,3)-葡聚糖来保护细胞。的
C.毒力白念珠菌在β(1,3)-葡聚糖更多暴露(未掩蔽)的条件下受损。为
例如,棘白菌素类抗真菌药物,如卡泊芬净,抑制β(1,3)-葡聚糖合酶,并导致细胞溶解,
体外,而且还诱导β(1,3)-葡聚糖的暴露,即使在亚致死浓度下。此外,一些
表现出增加的β(1,3)-葡聚糖暴露的突变体具有降低的毒性。然而一个主要
研究的挑战是了解卡泊芬净给药期间β(1,3)-葡聚糖暴露对毒力的影响
治疗很难区分药物的杀菌作用和β(1,3)-葡聚糖的影响
exposure.与此密切相关的一个挑战是,卡泊芬净引起β(1,3)-葡聚糖的机制
暴露是未知的。我们已经发现,我们可以将卡泊芬净的杀菌作用与暴露分开,
这让我们能够应对这两个挑战。这可以通过激活卡泊芬净应答来实现。
使用遗传方法而不是药物的信号通路,我们已经发现,
这些途径导致暴露。卡泊芬净激活Cek 1 MAP激酶(MAPK)途径
治疗,我们已经发现,这种级联反应的遗传激活导致暴露,
即使在没有卡泊芬净的情况下也会过度活化。然而,与药物不同的是,这种途径的激活
不影响生存能力因此,我们可以通过使用这一途径来解剖
这是一种机制,通过这种机制,可以进行解密。此外,我们可以通过使用Cek 1来应对第一个挑战。
途径作为探测免疫系统在小鼠全身感染期间如何响应暴露的工具
因为与卡泊芬净不同,它不具有杀菌作用。我们将在三个具体目标中应对这些挑战。目标1
我们将阐明Cek 1级联调节β(1,3)-葡聚糖暴露的机制。有两
Cek 1下游的主要转录因子,我们将确定该途径如何选择一个特定的
一个(Cph 1)使用遗传,上位性和细胞生物学技术的组合,将确定Cek 1-
Cph 1被激活以引起暴露。在目标2中,我们将确定Cek 1-Cph 1的转录靶点
改变细胞壁导致暴露。在目标3中,我们将阐明β(1,3)-葡聚糖的暴露如何导致
降低小鼠的毒性。我们将使用转基因小鼠来定义中性粒细胞、巨噬细胞、Dectin-1
和/或CR 3参与降低未掩蔽的C.白色念珠菌
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd B Reynolds其他文献
Todd B Reynolds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd B Reynolds', 18)}}的其他基金
Regulation of ß(1,3)-glucan exposure in Candida albicans
白色念珠菌中α(1,3)-葡聚糖暴露的调节
- 批准号:
10161731 - 财政年份:2020
- 资助金额:
$ 51.37万 - 项目类别:
Regulation of ß(1,3)-glucan exposure in Candida albicans
白色念珠菌中α(1,3)-葡聚糖暴露的调节
- 批准号:
10383692 - 财政年份:2020
- 资助金额:
$ 51.37万 - 项目类别:
Regulation of ß(1,3)-glucan exposure in Candida albicans
白色念珠菌中α(1,3)-葡聚糖暴露的调节
- 批准号:
10611957 - 财政年份:2020
- 资助金额:
$ 51.37万 - 项目类别:
Identification of CDP-DAG and serine binding sites in Candida albicans phosphatidylserine synthase, an antifungal drug target
抗真菌药物靶标白色念珠菌磷脂酰丝氨酸合酶中 CDP-DAG 和丝氨酸结合位点的鉴定
- 批准号:
9300114 - 财政年份:2017
- 资助金额:
$ 51.37万 - 项目类别:
Screen for phosphatidylserine synthase inhibitors: antifungals & lipid probes
筛选磷脂酰丝氨酸合酶抑制剂:抗真菌药
- 批准号:
8482105 - 财政年份:2013
- 资助金额:
$ 51.37万 - 项目类别:
Screen for phosphatidylserine synthase inhibitors: antifungals & lipid probes
筛选磷脂酰丝氨酸合酶抑制剂:抗真菌药
- 批准号:
8789352 - 财政年份:2013
- 资助金额:
$ 51.37万 - 项目类别:
Role of the OPI1 gene in controlling viability of Candida glabrata
OPI1 基因在控制光滑念珠菌活力中的作用
- 批准号:
7338261 - 财政年份:2007
- 资助金额:
$ 51.37万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 51.37万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 51.37万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 51.37万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 51.37万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 51.37万 - 项目类别:














{{item.name}}会员




