Meaningful Drug Interaction Alerts
有意义的药物相互作用警报
基本信息
- 批准号:10056643
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Meaningful Drug Interaction Alerts
Project Summary:
Clinical decision support (CDS) for electronic health records (EHR) and prescribing systems has been
promoted to improve patient outcomes. One type of CDS are drug-drug interaction (DDI) alerts. The Office of
the National Coordinator for Health IT meaningful use criteria includes the implementation of DDI detection and
warnings to physicians and other healthcare professionals. Nearly all healthcare organizations rely on DDI
alerts generated from commercial drug knowledge databases. Warnings are currently generated using simple
drug combination rules, ignoring drug attributes and the wealth of information available in the EHR that could
make the warnings specific to the patient. As a result, providers are bombarded with useless warnings and
often miss important ones.
Our approach is to change the framework for DDI alerting from basic look-up tables to a more complex, but
meaningful, clinical algorithms. Our plan is innovative because it will: 1) eliminate alerts for DDIs that are not
clinically important given the patient and drug context; 2) develop implementable and tested algorithms using
existing and new evidence; and 3) support the dissemination, implementation, and evaluation of these
algorithms across the spectrum of healthcare facilities and organizations. The central hypothesis of this
project is that individualizing DDI alerts to specific patient circumstances will result in a much greater proportion
of alerts that physicians, pharmacists, and other healthcare providers will be more likely to heed. We will
accomplish our objectives and test our hypothesis by pursuing the following aims:
Specific Aim 1: Design sharable evidence-based individualized DDI algorithms that capitalize on the wealth of
patient data located within electronic health records;
Specific Aim 2: Validate the function of newly designed DDI algorithms using electronic health record data;
and
Specific Aim 3: Conduct a prospective evaluation of DDI algorithms in a variety of healthcare environments
including ambulatory and institutional settings.
This project will greatly improve CDS for DDIs by incorporating contextual factors into evidence-based and
validated alert algorithms, which will reduce alert fatigue and result in more meaningful CDS. Our approach,
involving partners across multiple organizations and environments and experts in drug interaction and
biomedical informatics, will result in safer healthcare with respect to the use of medications.
有意义的药物相互作用警报
项目摘要:
用于电子健康记录(EHR)和处方系统的临床决策支持(CDS)已被
以改善患者的治疗效果。一种类型的CDS是药物相互作用(DDI)警报。办公室
国家卫生信息技术有意义使用标准协调员包括DDI检测的实施,
警告医生和其他医疗保健专业人员。几乎所有的医疗机构都依赖DDI
从商业药物知识数据库生成的警报。目前,使用简单的
药物组合规则,忽略药物属性和EHR中可用的丰富信息,
针对患者提出警告。结果,提供商被无用的警告轰炸,
经常错过重要的。
我们的方法是将DDI警报的框架从基本的查找表更改为更复杂的,但
有意义的临床算法我们的计划是创新的,因为它将:1)消除不符合
考虑到患者和药物背景,具有临床重要性; 2)使用
现有的和新的证据; 3)支持传播,实施和评估这些
算法在医疗机构和组织的范围内。这个问题的核心假设是
项目的另一个特点是,针对特定患者情况的个性化DDI警报将导致更大比例的
医生、药剂师和其他医疗保健提供者将更有可能注意到的警报。我们将
通过追求以下目标来实现我们的目标并检验我们的假设:
具体目标1:设计可共享的基于证据的个性化DDI算法,
位于电子健康记录中的患者数据;
具体目标2:使用电子健康记录数据验证新设计的DDI算法的功能;
和
具体目标3:在各种医疗保健环境中对DDI算法进行前瞻性评价
包括流动和机构环境。
该项目将通过将背景因素纳入循证和
经验证的警报算法,这将减少警报疲劳并产生更有意义的CDS。我们的方法,
涉及多个组织和环境的合作伙伴以及药物相互作用方面的专家,
生物医学信息学将导致在使用药物方面更安全的医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL C MALONE其他文献
DANIEL C MALONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL C MALONE', 18)}}的其他基金
Implementation of DDInteract: A Shared-decision Making Tool for Anticoagulant Drug-Drug INTERACTions
DDInteract 的实施:抗凝药物-药物相互作用的共享决策工具
- 批准号:
10628461 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Enabling Shared Decision Making to Reduce Harm from Drug Interactions: An End-to-End Demonstration
实现共同决策以减少药物相互作用的危害:端到端演示
- 批准号:
10023271 - 财政年份:2019
- 资助金额:
$ 16.41万 - 项目类别:
Dissemination and Implementation of QT Risk Clinical Decision Support
QT 风险临床决策支持的传播和实施
- 批准号:
9901452 - 财政年份:2019
- 资助金额:
$ 16.41万 - 项目类别:
Dissemination and Implementation of QT Risk Clinical Decision Support
QT 风险临床决策支持的传播和实施
- 批准号:
10103922 - 财政年份:2019
- 资助金额:
$ 16.41万 - 项目类别:
Drug-Drug Interaction Clinical Decision Support Conference Series
药物-药物相互作用临床决策支持会议系列
- 批准号:
8730131 - 财政年份:2012
- 资助金额:
$ 16.41万 - 项目类别:
Drug-Drug Interaction Clinical Decision Support Conference Series
药物-药物相互作用临床决策支持会议系列
- 批准号:
8550787 - 财政年份:2012
- 资助金额:
$ 16.41万 - 项目类别:
Drug-Drug Interaction Clinical Decision Support Conference Series
药物-药物相互作用临床决策支持会议系列
- 批准号:
8431860 - 财政年份:2012
- 资助金额:
$ 16.41万 - 项目类别:
Innovative Diffusion of Comparative Effectiveness Research
比较有效性研究的创新传播
- 批准号:
8007568 - 财政年份:2010
- 资助金额:
$ 16.41万 - 项目类别:
相似国自然基金
不同功能基团的电中性Drug-Free纳米颗粒的构建及克服肿瘤耐药的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Drug-ADR-Pathway复合网络构建及ADR分子机制研究
- 批准号:61372188
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
Drug-pHLA对接指纹图谱库的构建及HLA介导SADR的预测方法研究
- 批准号:61073135
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
新型药物传输系统drug-LDHs 复合纳米粒子的可控制备及其微结构对缓控释性能的调控
- 批准号:20776012
- 批准年份:2007
- 资助金额:31.0 万元
- 项目类别:面上项目
用Drug-Western法分离恶性疟原虫cDNA编码的青蒿素类药物结合蛋白
- 批准号:30070681
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:面上项目
相似海外基金
Involvement of Ca2+ signaling in drug-inflammation interaction and elucidation of Drug-induced gingival enlargement
Ca2 信号传导参与药物-炎症相互作用以及药物引起的牙龈肥大的阐明
- 批准号:
23K16190 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PHARMACOKINETIC AND PHARMACODYNAMIC TRIALS FOR MEDICATION DEVELOPMENT IN SUD. TO1 PHASE 1 COCAINE DRUG INTERACTION SEPTEMBER 25, 2023 TO MARCH 24, 2025. N01DA-23-893
SUD 药物开发的药代动力学和药效动力学试验。
- 批准号:
10937538 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
PHASE I COCAINE DRUG INTERACTION STUDY. TO6. NIDA PHARMACOKINETIC ANALYSIS RESOURCE CENTER. 08/10/2023 - 02/09/2025. NIDA REF. NO. N01DA-19-8947.
第一阶段可卡因药物相互作用研究。
- 批准号:
10937276 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
Study on the origin of sustained drug releasability of polymeric nanomicelles based on clarifying the interaction potential surface
基于阐明相互作用势面研究聚合物纳米胶束缓释性的根源
- 批准号:
22H01888 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure/Function Drug Interaction Studies on Voltage-Gated Sodium Channels
电压门控钠通道的结构/功能药物相互作用研究
- 批准号:
BB/V018035/1 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Research Grant
Investigation of the Immune-Mediated Drug-Drug Interaction Potential of Immune Checkpoint Inhibitors
免疫检查点抑制剂免疫介导的药物相互作用潜力的研究
- 批准号:
10677895 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Development of a drug metabolism capacity and interaction evaluation system for the elderly with sarcopenia and avoidance of adverse drug reaction risks.
建立老年人肌少症药物代谢能力及相互作用评价体系,避免药物不良反应风险。
- 批准号:
22K06763 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genomic and drug-drug interaction mechanisms of interindividual variability in drug disposition
药物处置个体差异的基因组和药物相互作用机制
- 批准号:
10406564 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Development of an artificial intelligence-based drug discovery technique for mid-sized molecules targeting new protein–protein interaction
开发基于人工智能的药物发现技术,用于靶向新蛋白质的中型分子
- 批准号:
22K15258 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of the Immune-Mediated Drug-Drug Interaction Potential of Immune Checkpoint Inhibitors
免疫检查点抑制剂免疫介导的药物相互作用潜力的研究
- 批准号:
10506483 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:














{{item.name}}会员




