Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits
神经回路跨突触标记的分子多物种方法
基本信息
- 批准号:10009743
- 负责人:
- 金额:$ 273.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneAddressAdoptedBRAIN initiativeBehaviorBiological AssayBrainBrain DiseasesBrain imagingCalciumCell Surface ReceptorsCellsChimeric ProteinsCommunitiesComplexCre-LoxPDataDendritesDrosophila genusExperimental ModelsFishesGeneticGenetic RecombinationGenetic TechniquesGenetic TranscriptionGenomeGlucagonGoalsHumanImaging TechniquesInjectionsInvertebratesKnowledgeLabelLifeLigand BindingLigandsMapsMeasurementMediatingMethodsMicroscopeMicroscopyModelingModificationMolecularMolecular GeneticsMonitorNamesNervous system structureNeuraxisNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchNoiseOpticsOrganismPathway interactionsPhasePlasmidsPopulationProcessProteinsProteolysisReagentReceptor ActivationReporterReporter GenesReproducibilityResearch PersonnelRestSignal PathwaySignal TransductionSiteStructureSynapsesSystemTechnical ExpertiseTechniquesTestingTransgenic AnimalsTransgenic OrganismsWorkZebrafishbasedesignembryo cellexperimental studyflyin vivoinnovationinsightinterestneural circuitnovelnovel strategiesoptogeneticspostsynaptic neuronspresynaptic neuronsreceptorrelating to nervous systemresponsesensortooltwo-photonvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
It is estimated that the human brain contains an overwhelming 1015 synapses, structures essential for the normal
functioning of neural circuits. Our knowledge of the connections that form these critical signaling sites, in even
the simplest vertebrate nervous systems, is sorely lacking. Thus, a stated goal of this BRAIN initiative is to
“develop and validate novel tools to facilitate the detailed analysis of complex circuits and provide insights into
cellular interactions that underlie brain function”. This multi-PI collaborative project precisely addresses this goal.
It takes advantage of a powerful genetic technique, trans-Tango, that directs signaling across synapses to
identify both pre-synaptic neurons and their specific post-synaptic targets. The overall objectives of the proposed
experiments are three-fold: First, we will adapt the trans-Tango anterograde trans-synaptic signaling platform,
which was initially established and successfully implemented in the Drosophila model, to a vertebrate brain - that
of the zebrafish. The zebrafish is the organism of choice because of the ability to assay trans-Tango components
efficiently from injections of plasmid constructs into 1-cell embryos, and the ease and rapidity of generating
transgenic animals to activate trans-Tango in defined neuronal populations. Second, we will independently and
rigorously validate the neural connections revealed by trans-Tango as functional synaptic connections,
capitalizing on optogenetics, imaging techniques, and advanced microscopy methods. Owing to its transparency,
the larval zebrafish is ideally suited to verify synaptic connectivity in vivo using optical approaches. Third, we will
develop a new retrograde version of trans-Tango, which will allow identification of the pre-synaptic input of given
post-synaptic neurons. The modularity of trans-Tango permits efficient reconfiguration and optimization of the
system for accurate circuit
map
ping. The “retro-Tango” version will first be applied to Drosophila, building upon
lessons learned from the establishment of trans-Tango and, once optimal, introduced to the zebrafish nervous
system. By assembling the proposed genetic toolkit for anterograde and retrograde trans-synaptic tracing in both
invertebrate and vertebrate nervous systems, we expect these techniques to become widely used by the
neuroscience community and applied to additional experimental models. The strengths of this proposal are the
innovative strategies used to
map
neural connectivity, the compelling preliminary data, and the unique and
complementary expertise in molecular genetics, circuit neuroscience and microscopy design that the
collaborating researchers bring to the project.
项目摘要/摘要
据估计,人脑含有压倒性的1015个突触,这些突触是正常大脑的基本结构。
神经回路的功能。我们对形成这些关键信令点的连接的了解,甚至
最简单的脊椎动物神经系统,是极其缺乏的。因此,这一大脑计划的一个明确目标是
开发和验证新的工具,以促进复杂电路的详细分析,并提供对
构成大脑功能基础的细胞相互作用“。这个多PI协作项目就是为了实现这一目标。
它利用了一种强大的基因技术--反式探戈,这种技术可以将信号通过突触引导到
识别突触前神经元及其特定的突触后靶点。拟议方案的总体目标
实验有三个方面:第一,我们将适应跨Tango顺行跨突触信号平台,
它最初是在果蝇模型中建立并成功实施的,对脊椎动物的大脑-
斑马鱼。斑马鱼是首选的有机体,因为它有能力检测反式探戈成分
通过将质粒构建物注射到1-细胞胚胎中高效,并容易和快速地产生
转基因动物在确定的神经元种群中激活反式探戈。第二,我们将独立和
严格验证反式探戈揭示的神经连接是功能性突触连接,
利用光遗传学、成像技术和先进的显微技术。由于它的透明度,
斑马鱼幼体非常适合于使用光学方法在体内验证突触连接。第三,我们将
开发一种新的逆行版本的反式探戈,它将允许识别给定的突触前输入
突触后神经元。Trans-Tango的模块化允许高效地重新配置和优化
用于精确电路的系统
地图
平。“复古探戈”版本将首先应用于果蝇,在此基础上
从转基因探戈的建立中吸取的经验教训,一旦优化,就会被引入紧张的斑马鱼
系统。通过组装所提出的用于顺行和逆行跨突触追踪的遗传工具包,
无脊椎动物和脊椎动物神经系统,我们预计这些技术将被广泛应用于
神经科学界,并应用于其他实验模型。这项建议的优点是
创新战略用于
地图
神经连接,令人信服的初步数据,以及独特的
在分子遗传学、电路神经科学和显微镜设计方面的互补专业知识
合作的研究人员为该项目带来了帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilad Barnea其他文献
Gilad Barnea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilad Barnea', 18)}}的其他基金
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Sensorimotor Transformations for Controlling Heading Direction in the Insect Central Complex
昆虫中央复合体控制前进方向的感觉运动变换
- 批准号:
10717148 - 财政年份:2023
- 资助金额:
$ 273.18万 - 项目类别:
Molecular Multi-Species Approach for Trans-Synaptic Labeling of Neural Circuits - Diversity Supplement
用于神经回路跨突触标记的分子多物种方法 - Diversity Supplement
- 批准号:
10286154 - 财政年份:2020
- 资助金额:
$ 273.18万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10189547 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
The neural circuits underlying gustatory perception in flies
果蝇味觉感知的神经回路
- 批准号:
10424479 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
10402843 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
Molecular and cellular analysis of accessory olfactory circuits in mice
小鼠辅助嗅觉回路的分子和细胞分析
- 批准号:
9816360 - 财政年份:2018
- 资助金额:
$ 273.18万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
9137838 - 财政年份:2016
- 资助金额:
$ 273.18万 - 项目类别:
An olfactory subsystem that mediates innate behaviors
调节先天行为的嗅觉子系统
- 批准号:
8757671 - 财政年份:2014
- 资助金额:
$ 273.18万 - 项目类别:
Controlling epigenetic states and nuclear architecture in the brain
控制大脑中的表观遗传状态和核结构
- 批准号:
9275951 - 财政年份:2013
- 资助金额:
$ 273.18万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 273.18万 - 项目类别:
Research Grant