User-driven Retrospectively Supervised Classification Updating (RESCU) system for robust upper limb prosthesis control

用户驱动的回顾性监督分类更新 (RESCU) 系统,用于稳健的上肢假肢控制

基本信息

项目摘要

ABSTRACT Approximately 41,000 individuals live with upper-limb loss (loss of at least one hand) in the US. Fortunately, prosthetic devices have advanced considerably in the past decades with the development of dexterous, anthropomorphic hands. However, potentially the most promising used control strategy, myoelectric control, lacks a correspondingly high-level of performance and hence the use of dexterous hands remains highly limited. The need for a complete overhaul in upper limb prosthesis control is well highlighted by the abandonment rates of myoelectric devices, which can reach up to 40% in the case of trans-humeral amputees. The area of research that has received the most focus over the past decade has been “pattern recognition,” which is a signal processing based control method that uses multi-channel surface electromyography as the control input. While pattern recognition provides intuitive operation of multiple prosthetic degrees of freedom, it lacks robustness and requires frequent, often daily calibration. Thus, it has not yet achieved the desired clinical acceptance. Our team proposes clinical translation of a novel highly adaptive upper limb prosthesis control system that incorporates two major advances: 1) machine learning (robust classification by implementing a non-boundary based algorithm), and 2) training by retrospectively incorporating user data from activities of daily living (ADL). The proposed system will enable machine intelligence with user input for prosthesis control. Our work is organized as follows: Phase I: (a) First, we will implement a fundamentally new machine intelligence technique, Extreme Learning Machine with Adaptive Sparse Representation Classification (EASRC), that is more resilient to untrained noisy conditions that users may encounter in the real-world and requires less data than traditional myoelectric signal processing. (b) In parallel, we will implement an adaptive learning algorithm, Nessa, which allows users to relabel misclassified data recorded during use and then update the EASRC classifier to adapt to any major extrinsic or intrinsic changes in the signals. Taken together, EASRC and Nessa comprise the Retrospectively Supervised Classification Updating (RESCU) system. Once, the RESCU implementation is complete, we will optimize the system through a joint effort with Johns Hopkins University, and complete an iterative benchtop RESCU evaluation with a focus group of 3 amputee subjects and their prosthetists. Phase II: Verification and validation of RESCU will be completed, culminating in third-party validation testing and certification. Finally, we will complete a clinical assessment including self-reporting subjective measures, and real-world usage metrics in a long-term clinical study.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Reddy Kaliki其他文献

Rahul Reddy Kaliki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Reddy Kaliki', 18)}}的其他基金

Regulatory clearance of the Glide Control Strategy for Upper Limb Prostheses
上肢假肢滑动控制策略的监管许可
  • 批准号:
    10603007
  • 财政年份:
    2023
  • 资助金额:
    $ 73.56万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10328954
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10710335
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10113148
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10478231
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10710328
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10259073
  • 财政年份:
    2021
  • 资助金额:
    $ 73.56万
  • 项目类别:
User-driven Retrospectively Supervised Classification Updating (RESCU) system for robust upper limb prosthesis control
用户驱动的回顾性监督分类更新 (RESCU) 系统,用于稳健的上肢假肢控制
  • 批准号:
    10078697
  • 财政年份:
    2020
  • 资助金额:
    $ 73.56万
  • 项目类别:
Sonomyographic Upper Limb Prosthetics: A New Paradigm
超声波上肢假肢:一种新范式
  • 批准号:
    10088450
  • 财政年份:
    2020
  • 资助金额:
    $ 73.56万
  • 项目类别:
Sonomyographic Upper Limb Prosthetics: A New Paradigm
超声波上肢假肢:一种新范式
  • 批准号:
    10375604
  • 财政年份:
    2020
  • 资助金额:
    $ 73.56万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 73.56万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 73.56万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 73.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了