User-driven Retrospectively Supervised Classification Updating (RESCU) system for robust upper limb prosthesis control

用户驱动的回顾性监督分类更新 (RESCU) 系统,用于稳健的上肢假肢控制

基本信息

项目摘要

ABSTRACT Approximately 41,000 individuals live with upper-limb loss (loss of at least one hand) in the US. Fortunately, prosthetic devices have advanced considerably in the past decades with the development of dexterous, anthropomorphic hands. However, potentially the most promising used control strategy, myoelectric control, lacks a correspondingly high-level of performance and hence the use of dexterous hands remains highly limited. The need for a complete overhaul in upper limb prosthesis control is well highlighted by the abandonment rates of myoelectric devices, which can reach up to 40% in the case of trans-humeral amputees. The area of research that has received the most focus over the past decade has been “pattern recognition,” which is a signal processing based control method that uses multi-channel surface electromyography as the control input. While pattern recognition provides intuitive operation of multiple prosthetic degrees of freedom, it lacks robustness and requires frequent, often daily calibration. Thus, it has not yet achieved the desired clinical acceptance. Our team proposes clinical translation of a novel highly adaptive upper limb prosthesis control system that incorporates two major advances: 1) machine learning (robust classification by implementing a non-boundary based algorithm), and 2) training by retrospectively incorporating user data from activities of daily living (ADL). The proposed system will enable machine intelligence with user input for prosthesis control. Our work is organized as follows: Phase I: (a) First, we will implement a fundamentally new machine intelligence technique, Extreme Learning Machine with Adaptive Sparse Representation Classification (EASRC), that is more resilient to untrained noisy conditions that users may encounter in the real-world and requires less data than traditional myoelectric signal processing. (b) In parallel, we will implement an adaptive learning algorithm, Nessa, which allows users to relabel misclassified data recorded during use and then update the EASRC classifier to adapt to any major extrinsic or intrinsic changes in the signals. Taken together, EASRC and Nessa comprise the Retrospectively Supervised Classification Updating (RESCU) system. Once, the RESCU implementation is complete, we will optimize the system through a joint effort with Johns Hopkins University, and complete an iterative benchtop RESCU evaluation with a focus group of 3 amputee subjects and their prosthetists. Phase II: Verification and validation of RESCU will be completed, culminating in third-party validation testing and certification. Finally, we will complete a clinical assessment including self-reporting subjective measures, and real-world usage metrics in a long-term clinical study.
抽象的 在美国,大约有41,000名患有上限损失(至少一只手损失)的人。幸运的是, 在过去的几十年中,随着灵巧, 拟人手。但是,可能是最有前途的控制策略,肌电控制, 缺乏相应高级的性能,因此灵巧的手仍然很高 有限的。需要在上肢假体控制中进行全面大修的需求很好地强调了 肌电设备的遗弃率,在跨性别的情况下最多可达到40% 截肢者。在过去十年中,人们最集中于研究的领域是“模式 识别,“这是一种基于信号处理的控制方法,使用多通道表面 肌电图作为对照输入。虽然模式识别提供了多个的直观操作 假肢的自由度,它缺乏稳健性,并且经常需要每天的校准。那就是 尚未实现所需的临床接受。 我们的团队提议对新型高度适应性上肢假体控制系统进行临床翻译 结合了两个主要进步:1)机器学习(通过实施非边界的鲁棒分类 基于算法)和2)回顾性培训,从日常生活活动(ADL)中纳入用户数据。 提出的系统将通过用户输入来实现机器智能以进行假体控制。我们的工作是 组织如下: 第一阶段:(a)首先,我们将实施一种从根本上实施新的机器智能技术,极限学习 具有自适应稀疏表示分类(EASRC)的机器,对未经训练的机器更具弹性 用户可能在现实世界中遇到的噪音条件,并且比传统肌电所需的数据更少 信号处理。 (b)并行,我们将实施一种自适应学习算法Nessa,该算法允许 用户在使用过程中记录的Relabel错误分类数据,然后更新EASRC分类器以适应任何 信号的主要外部或内在变化。总之,EASRC和Nessa建立了 追溯性监督分类更新(RESCU)系统。 一旦完成了RESCU的实施,我们将通过与Johns的共同努力来优化系统 霍普金斯大学,并与3个截肢者组成的焦点小组完成迭代台式救援评估 主题及其假肢。 第二阶段:将完成RESCU的验证和验证,最终在第三方验证测试中 和认证。最后,我们将完成包括自我报告的主观措施,包括的临床评估, 以及一项长期临床研究中的现实使用指标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Reddy Kaliki其他文献

Rahul Reddy Kaliki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Reddy Kaliki', 18)}}的其他基金

Regulatory clearance of the Glide Control Strategy for Upper Limb Prostheses
上肢假肢滑动控制策略的监管许可
  • 批准号:
    10603007
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10328954
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10710335
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Regulatory clearance of a rehabilitation system for individuals with upper limb loss
上肢丧失患者康复系统的监管许可
  • 批准号:
    10113148
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10478231
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10710328
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Development and clinical assessment of a robust, 3D printed titanium, myoelectric powered prosthetic digit system
强大的 3D 打印钛肌电假肢数字系统的开发和临床评估
  • 批准号:
    10259073
  • 财政年份:
    2021
  • 资助金额:
    $ 6.41万
  • 项目类别:
Sonomyographic Upper Limb Prosthetics: A New Paradigm
超声波上肢假肢:一种新范式
  • 批准号:
    10088450
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
Sonomyographic Upper Limb Prosthetics: A New Paradigm
超声波上肢假肢:一种新范式
  • 批准号:
    10375604
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:
Sonomyographic Upper Limb Prosthetics: A New Paradigm
超声波上肢假肢:一种新范式
  • 批准号:
    10556393
  • 财政年份:
    2020
  • 资助金额:
    $ 6.41万
  • 项目类别:

相似国自然基金

采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
  • 批准号:
    51779168
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
采用数值计算求解一类半代数系统全部整数解
  • 批准号:
    11671377
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
采用pinball loss的MEE算法研究
  • 批准号:
    11401247
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
  • 批准号:
    41301419
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
采用ε近似算法的盲信道均衡
  • 批准号:
    60172058
  • 批准年份:
    2001
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
HomePal: Developing a Smart Speaker-Based System for In-Home Loneliness Assessment for Older Adults
HomePal:开发基于智能扬声器的系统,用于老年人的家庭孤独评估
  • 批准号:
    10725229
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
A novel instrument for continuous blood pressure monitoring
一种新型连续血压监测仪器
  • 批准号:
    10696510
  • 财政年份:
    2023
  • 资助金额:
    $ 6.41万
  • 项目类别:
Clinical Validation of Myoelectric Implant for Intuitive Prosthesis Control
用于直观假肢控制的肌电植入物的临床验证
  • 批准号:
    10290697
  • 财政年份:
    2022
  • 资助金额:
    $ 6.41万
  • 项目类别:
User-driven Retrospectively Supervised Classification Updating (RESCU) system for robust upper limb prosthesis control
用户驱动的回顾性监督分类更新 (RESCU) 系统,用于稳健的上肢假肢控制
  • 批准号:
    10013405
  • 财政年份:
    2018
  • 资助金额:
    $ 6.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了