Development of a novel community-based high-performance surveillance network for drug use
开发基于社区的新型高性能毒品使用监测网络
基本信息
- 批准号:10054384
- 负责人:
- 金额:$ 7.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Alcohol or Other Drugs useBig DataBiometryCommunitiesComplexDancingDataDatabasesDevelopmentDisease OutbreaksDisease ProgressionDrug usageDrug userEpidemicEpidemiologyFailureGovernment AgenciesHIVHarm ReductionHousingIndianaIndividualInformation DisseminationInterdisciplinary StudyInterventionKentuckyKnowledgeLinkMachine LearningMassachusettsMeasuresMethodologyMethodsModelingModernizationOutputOverdosePatientsPerformancePharmaceutical PreparationsPoliciesPopulationPopulation SizesPrevalenceProcessProviderPublic HealthResearchResource AllocationRiskRisk FactorsScienceServicesSystemTechniquesTimeTranslatingWest Virginiabaseclinical carecommunity buildingcommunity involvementdata warehouseeconometricsfollow-upinnovationinterdisciplinary approachnovelopioid use disorderoverdose riskprediction algorithmprescription opioidpreventprogramssocial stigmasurveillance datasurveillance networktool
项目摘要
PROJECT SUMMARY
Surveillance efforts for substance use are failing us. They rely on outdated risk prediction tools yet risk factors
for HIV and overdose are context-specific and are impacted by the interplay between patient-, provider-, and
system-level factors as well as epidemiologic realities in a community. They rely on direct estimation methods
for measuring prevalence yet barriers such as lack of access to medications for opioid use disorder (MOUD)
and harm reduction services, stigma, criminalization of drug use, and unaffordable housing prevent people who
use drugs (PWUD) from being counted. Additionally, they rarely involve community engagement and
surveillance data are not disseminated effectively to communities to achieve maximum benefit. In the context
of the ongoing overdose crisis and recent outbreaks of HIV among PWUD in Indiana, Massachusetts,
Kentucky, and West Virginia, the failures of this basic tool of public health take on a new urgency. The number
of efficacious programs and interventions to prevent and treat substance use and HIV continues to grow, but
without accurate estimates of the size of the pool of people at risk of overdose and for acquiring HIV and
knowledge of their specific risk factors, these interventions cannot reach their full potential. We cannot reach
people who we do not know exist and are at risk. We, therefore, need to immediately modernize and upgrade
our surveillance capacity to understand the size and composition of drug-using populations. I am proposing an
innovative, interdisciplinary research program that integrates epidemiology, community engagement,
biostatistics, econometrics, and information dissemination to create a novel community-based, high-
performance surveillance network for PWUD. I will do this by (1) creating a community engaged research
(CEnR) process around big data for PWUD; (2) building community-specific risk prediction algorithms for HIV
acquisition, disease progression, and loss to follow up among PWUD; (3) using enhanced indirect estimation
methods to determine the size of populations of PWUD and to evaluate the impact of interventions; and (4)
disseminating findings and translating research into action. The data centerpiece of this program will be the
Public Health Data Warehouse, an individually-linked database from more than 15 Massachusetts government
agencies, which includes more than 97% of the Massachusetts population. Preliminary analyses with this
database are underway and will be made accessible to communities in real-time. This project represents an
approach that is entirely divergent from traditional surveillance techniques by using a combination of complex
methodologies with the community always at the center of the process—from initiation to final output. This
novel Massachusetts cOMmunity-bAsed Drug use surveillANCE (“Moma Dance”) Network will begin in
Massachusetts, but will serve as a model for other states and jurisdictions as they contend with the failures of
their own surveillance systems for PWUD. These efforts will translate research into action at the community
level and have an immediate and sustained public health impact on the drug use and HIV epidemics.
项目摘要
对药物使用的监督努力正在使我们失望。他们依赖于过时的风险预测工具,
对于艾滋病毒和过量是特定的环境,并受到患者,提供者和
系统层面的因素以及社区的流行病学现实。它们依赖于直接估算方法
用于衡量流行率,但障碍,如缺乏获得阿片类药物使用障碍(MOUD)的药物
减少伤害服务,耻辱,毒品使用的刑事化,以及负担不起的住房,
使用毒品(PWUD)被计算在内。此外,它们很少涉及社区参与,
监测数据没有有效地传播到社区,以实现最大效益。背景下
在印第安纳州,马萨诸塞州,
在肯塔基州和西弗吉尼亚州,这一公共卫生基本工具的失败具有新的紧迫性。数量
预防和治疗药物使用和艾滋病毒的有效方案和干预措施继续增长,但
没有准确估计有过量用药风险和感染艾滋病毒风险的人群的规模,
由于缺乏对他们具体风险因素的了解,这些干预措施无法充分发挥其潜力。我们不能达成
我们不知道的人存在并处于危险之中。因此,我们需要立即实现现代化和升级
我们的监测能力,以了解吸毒人口的规模和组成。我提议
创新,跨学科的研究计划,整合流行病学,社区参与,
生物统计学,计量经济学和信息传播,以创建一个新的社区为基础的,高,
PWUD的性能监控网络。我将通过(1)创建一个社区参与研究来做到这一点
(2)建立针对艾滋病毒的社区特定风险预测算法
PWUD的获得、疾病进展和失访;(3)使用增强的间接估计
确定PWUD人群规模和评估干预措施影响的方法;以及(4)
传播研究结果并将研究成果转化为行动。该计划的数据中心将是
公共卫生数据仓库,来自超过15个马萨诸塞州政府的独立链接数据库
机构,其中包括超过97%的马萨诸塞州人口。初步分析,
数据库正在建设中,并将实时提供给社区。该项目代表了一个
这种方法与传统的监视技术完全不同,它使用复杂的
社区始终处于过程的中心-从启动到最终输出。这
一个新的马萨诸塞州社区毒品使用监督(“Moma舞蹈”)网络将于开始,
马萨诸塞州,但将作为其他国家和司法管辖区的模式,因为他们与失败的斗争,
他们自己的监控系统这些努力将把研究转化为社区的行动
毒品和犯罪问题办公室的报告指出,毒品和犯罪问题办公室的工作人员在吸毒和艾滋病毒流行的水平,并立即和持续的公共卫生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Adam Barocas其他文献
Joshua Adam Barocas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Adam Barocas', 18)}}的其他基金
Development of a novel community-based high-performance surveillance network for drug use
开发基于社区的新型高性能毒品使用监测网络
- 批准号:
10512220 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10408117 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10545659 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10625422 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
Strategies to reduce serious bacterial infections and overdose among people who inject drugs
减少注射吸毒者严重细菌感染和过量用药的策略
- 批准号:
10038052 - 财政年份:2020
- 资助金额:
$ 7.76万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Discovery Projects
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
- 批准号:
2231654 - 财政年份:2023
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant