Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
基本信息
- 批准号:10018290
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdherenceAffectAfrican AmericanAgingAll of Us Research ProgramAreaAwardBig DataBlindnessBlood PressureBlood VesselsChronicChronic DiseaseClinicalClinical ResearchCounselingDataData ScienceData SetDepartment chairDevelopmentDevicesDiseaseDisease ManagementDisease ProgressionEarly DiagnosisEarly treatmentElectronic Health RecordElectronicsEnsureExhibitsEyeEye diseasesEyedropsFellowshipFoundationsFunctional disorderFutureGlaucomaHome Blood Pressure MonitoringHome environmentHuman ResourcesHypertensionImageIndividualInformaticsInstitutesInstitutionInterventionInvestigationLatinoLeadLeadershipMachine LearningMeasurementMeasuresMentorsMethodsModelingMonitorMorbidity - disease rateNerve DegenerationOperative Surgical ProceduresOphthalmologistOphthalmologyOptic NerveOutcomeParticipantPatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhysical activityPilot ProjectsPopulationPredictive AnalyticsPredictive ValuePublic HealthPublic Health InformaticsQuality of lifeResearchResourcesRiskRisk stratificationRoleSleepSymptomsTechniquesTechnologyTestingTherapeuticTimeTrack and FieldTrainingUnited States National Institutes of HealthVisionVisual FieldsWorkbasebiomedical informaticsblood pressure regulationcircadian regulationclinical phenotypeclinical practicecohortcomorbiditycostdata integrationearly onsetelectronic dataexperiencefaculty communityflexibilityhealth information technologyimprovedinnovationmedication compliancemultidisciplinarymultimodalitynew therapeutic targetnovelnovel therapeutic interventionpatient engagementpersonalized managementprecision medicinepredictive modelingprofessorprogramsracial minoritysensorsensor technologysmart watchtreatment adherencewearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Glaucoma is the world's leading cause of irreversible blindness and will affect >110 million
people by 2040. Early detection and treatment are critical, as symptoms typically do not present
until the disease is advanced. A data-driven precision medicine approach is needed to better
identify individuals who are at greatest risk of developing the disease and who are at greatest
risk of progressing quickly to vision loss. While there has been considerable progress in eye
imaging and testing to improve glaucoma monitoring, precision management of glaucoma is
incomplete without accounting for patients' co-existing systemic conditions, concurrent systemic
medications and treatments, and adherence with prescribed glaucoma treatment.
Understanding how systemic conditions, and specifically vascular conditions such as
hypertension, impact glaucoma presents growing public health importance given the increasing
co-morbidities facing aging populations. Preliminary studies have demonstrated the predictive
value of systemic data, even without ophthalmic endpoints. Similarly, measuring medication
adherence is important for guiding patient counseling and engagement and avoiding
downstream interventions such as surgeries, which carry high cost and morbidity. These factors
are important for providing a more comprehensive perspective of glaucoma management and
for improving patient outcomes, yet they are relatively understudied.
I propose applying multi-modal advancements in health information technology (IT) to address
these gaps and achieve the following specific aims: (1) Develop machine learning-based
predictive models classifying patients at risk for glaucoma progression using systemic electronic
health record (EHR) data from a diverse nationwide patient cohort; (2) evaluate how integrating
blood pressure (BP) data from novel smartwatch-based home BP monitors enhance predictive
models for risk stratification in glaucoma, and (3) measure glaucoma medication adherence
using innovative flexible electronic sensors to validate their use for future interventions aimed at
improving adherence and clinical outcomes in glaucoma. These studies would leverage state-
of-the-art methods in big-data predictive modeling as well as cutting-edge advancements in
sensor technologies. This multi-faceted approach will build a foundation for a health IT
framework geared toward improving risk stratification and generating novel therapeutic targets
for glaucoma patients.
项目摘要/摘要
青光眼是世界上导致不可逆转失明的主要原因,将影响1.1亿英镑
到2040年的人口数量。早期发现和治疗至关重要,因为通常不存在症状。
直到疾病进展。需要一种数据驱动的精准医疗方法来更好地
确定哪些人罹患这种疾病的风险最高,哪些人的患病风险最高
进展迅速导致视力丧失的风险。虽然在眼睛方面已经有了相当大的进步
成像和测试改善青光眼监测,精准管理青光眼
不完整,不考虑患者并存的全身情况,并发全身
药物和治疗,以及坚持青光眼处方药治疗。
了解全身状况,特别是血管状况,如
高血压、冲击性青光眼对公共卫生的重要性日益增加
老龄化人口面临的并存问题。初步研究表明,
系统数据的价值,即使没有眼科终点。同样,测量药物
坚持对于指导患者咨询、参与和避免
下游干预措施,如手术,费用高,发病率高。这些因素
对于提供一个更全面的青光眼管理和
对于改善患者的预后,它们的研究相对较少。
我建议应用医疗信息技术(IT)中的多模式进步来解决
这些差距和实现的具体目标如下:(1)开发基于机器学习的
使用全身电子学对青光眼进展风险患者进行分类的预测模型
来自不同的全国患者队列的健康记录(EHR)数据;(2)评估如何整合
新型智能手表家用血压监测仪的血压数据增强了预测性
青光眼风险分层模型,以及(3)测量青光眼用药依从性
使用创新的灵活的电子传感器来验证它们的使用,以供未来的干预措施之用
改善青光眼患者的依从性和临床结局。这些研究将利用国家-
大数据预测建模中的最先进方法以及
传感器技术。这种多方面的方法将为医疗IT奠定基础
旨在改善风险分层和产生新的治疗靶点的框架
适用于青光眼患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sally Liu Baxter其他文献
Sally Liu Baxter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sally Liu Baxter', 18)}}的其他基金
PAGE-G: Precision Approach combining Genes and Environment in Glaucoma
PAGE-G:青光眼基因与环境相结合的精准方法
- 批准号:
10797646 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10858583 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10471118 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
- 批准号:
10615857 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
- 批准号:
10677890 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10885481 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
- 批准号:
10409942 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
- 批准号:
10504041 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
- 批准号:
10260459 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
- 批准号:
10437231 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 39.4万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 39.4万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 39.4万 - 项目类别: