Bridge2AI: Salutogenesis Data Generation Project

Bridge2AI:Salutogenesis 数据生成项目

基本信息

  • 批准号:
    10471118
  • 负责人:
  • 金额:
    $ 783.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) project is one of the data generation projects in the NIH Common Fund’s Bridge2AI program. The project seeks to create a flagship ethically-sourced dataset to enable future generations of artificial intelligence/machine learning (AI/ML) research to provide critical insights into type 2 diabetes mellitus (T2DM), including salutogenic pathways to return to health. The ability to understand and affect the course of complex, multi-organ diseases such as T2DM has been limited by a lack of well-designed, high quality, large, and inclusive multimodal datasets. The team of investigators will aim to collect a cross-sectional dataset of 4,000+ people and longitudinal data from 10% of the study cohort across the US. An equal number of Black, Hispanic/LatinX, Asian, and White participants will be recruited and the study cohort will be balanced for diabetes disease stage. Data collection will be specifically designed to permit downstream pseudotime manifold analysis, an approach used to predict disease trajectories by collecting and learning from complex, multimodal data from participants with differing disease severity (normal to insulin-dependent T2DM). The long-term objective for this project is to develop a foundational dataset in diabetes, agnostic to existing classification criteria or biases, which can be used to reconstruct a temporal atlas of T2DM development and reversal towards health (i.e., salutogenesis). Six cross-disciplinary project modules involving teams located across eight institutions will work together to develop this flagship dataset. All data will be optimized for downstream AI/ML research and made publicly available. This project will also create a roadmap for ethical and equitable research that focuses on the diversity of the research participants and the workforce involved at all stages of the research process (study design and data collection, curation, analysis, and sharing and collaboration). The AI-READI project will also engage in a tribal consultation to address barriers and facilitators of participation with the goal of collecting similar data within a Native American cohort in an ethical and respectful manner. Specific aims include 1) Collect and share the dataset for AI/ML research according to the Findable, Accessible, Interoperable, Reusable (FAIR) data principles, 2) Create a model for developing diverse and representative datasets, and 3) Increase access to and quality of AI/ML research by recruiting and training personnel with diverse backgrounds.
糖尿病洞察的人工智能就绪和公平地图集(AI-READI)项目是NIH共同基金Bridge 2AI计划的数据生成项目之一。该项目旨在创建一个基于道德的旗舰数据集,使未来几代人工智能/机器学习(AI/ML)研究能够提供对2型糖尿病(T2 DM)的关键见解,包括恢复健康的健康途径。由于缺乏精心设计、高质量、大型和包容性的多模式数据集,理解和影响T2 DM等复杂多器官疾病病程的能力受到限制。研究团队的目标是收集4,000多人的横断面数据集和来自美国10%研究队列的纵向数据。将招募相同数量的黑人、西班牙裔/拉丁裔、亚裔和白色受试者,研究队列将在糖尿病分期方面保持平衡。数据收集将专门设计为允许下游伪时间流形分析,这是一种通过收集和学习来自不同疾病严重程度(正常至胰岛素依赖型T2 DM)受试者的复杂多模态数据来预测疾病轨迹的方法。该项目的长期目标是开发一个糖尿病基础数据集,对现有的分类标准或偏差不可知,可用于重建T2 DM发展和健康逆转的时间图谱(即,Salutogenesis)。六个跨学科项目模块涉及八个机构的团队,将共同开发这个旗舰数据集。所有数据都将针对下游AI/ML研究进行优化,并公开提供。该项目还将为道德和公平研究制定路线图,重点关注研究参与者的多样性和参与研究过程各个阶段的劳动力(研究设计和数据收集,策展,分析,共享和协作)。AI-READI项目还将参与部落协商,以解决参与的障碍和促进因素,目的是以道德和尊重的方式在美洲原住民群体中收集类似数据。具体目标包括:1)根据可发现、可解释、可互操作、可重用(FAIR)数据原则,收集和共享AI/ML研究的数据集; 2)创建用于开发多样化和代表性数据集的模型; 3)通过招募和培训具有不同背景的人员,提高AI/ML研究的可访问性和质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sally Liu Baxter其他文献

Sally Liu Baxter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sally Liu Baxter', 18)}}的其他基金

PAGE-G: Precision Approach combining Genes and Environment in Glaucoma
PAGE-G:青光眼基因与环境相结合的精准方法
  • 批准号:
    10797646
  • 财政年份:
    2023
  • 资助金额:
    $ 783.8万
  • 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
  • 批准号:
    10858583
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
  • 批准号:
    10615857
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
  • 批准号:
    10677890
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
  • 批准号:
    10885481
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
  • 批准号:
    10409942
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
  • 批准号:
    10504041
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
  • 批准号:
    10018290
  • 财政年份:
    2020
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
  • 批准号:
    10260459
  • 财政年份:
    2020
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
  • 批准号:
    10437231
  • 财政年份:
    2020
  • 资助金额:
    $ 783.8万
  • 项目类别:

相似海外基金

BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
  • 批准号:
    23KF0076
  • 财政年份:
    2023
  • 资助金额:
    $ 783.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
  • 批准号:
    10740308
  • 财政年份:
    2023
  • 资助金额:
    $ 783.8万
  • 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
  • 批准号:
    10818803
  • 财政年份:
    2023
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10743857
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10558629
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10508739
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
    Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10570256
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10364874
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    $ 783.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了