Outcome-driven Order Set Content Development, Management, and Evaluation

结果驱动的订单集内容开发、管理和评估

基本信息

  • 批准号:
    10018097
  • 负责人:
  • 金额:
    $ 18.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-13 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Candidate Goals and Objectives: With a background in Information Systems and Management, and Biostatistics, Dr. Zhang has demonstrated research records on electronic health record data mining to identify patterns of healthcare delivery that may be used to inform patient-centered and evidence-based healthcare. The proposal will provide additional training for Dr. Zhang on advanced machine learning, statistics, and evaluation methods in biomedical informatics for applications on clinical decision support (CDS). Dr. Zhang's long-term goal is to bringing innovation CDS development and evaluation through novel biomedical informatics and data science techniques. Institutional Environment and Career Development: Weill Cornell Medicine (WCM) provides ideal research facilities and training environment for Dr. Zhang. Dr. Jyotishman Pathak, Chief of Division of Health Informatics at Department of Health Policy and Research, will lead a multidisciplinary team of mentors: Drs. Jessica Ancker and Fei Wang at WCM, and Dr. Adam Wright at Harvard Medical School. Dr. Zhang also has collaborators in WCM and NewYork-Presbyterian Hospital who will support her in her training and research activities and provide clinical expertise. Research Aims Order sets are a type of CDS in computerized provider order entry (CPOE) to standardize decision making in the ordering process and encourage compliance with clinical practice guidelines. Previous literature on order set use has focused its effect on usability, workload, and physician satisfaction, but a knowledge gap remains with respect to the effect of order sets on care outcomes. The overall goal of the research study is to create a continuous improvement cycle for order sets with respect to a care outcome by rigorously learning from data. Aim 1 of the study will apply computational phenotyping and subtyping algorithms to identify cohorts of heart failure (HF) subtypes. Aim 2 will evaluate an existing order set intended for the care of HF patients on a care outcome defined as 30-day all-cause, unplanned readmission with a hypothesis that the use of this order set is associated with a better outcome. This will be achieved by building a range of outcome prediction models and evaluating the strength of each order set order as a predictor. Aim 3 will optimize the existing order sets using a metaheuristic optimization method such that its content collectively may have the largest positive effect on the outcome of 30-day all-cause unplanned readmission. The effects of order set use on the care outcome is measured using a causal inference technique in each iteration. The expected outcome is a framework to develop and evaluate HF order sets which may eventually be generalized to other clinical areas. Training from this proposal may lead to multi-site R01 studies of outcome-driven HF order sets and actual implementations.
项目摘要 候选目标和目标: Zhang博士在信息系统和管理和生物统计学方面具有背景 电子健康记录数据挖掘的研究记录,以识别可能是医疗保健提供模式 用于告知以患者为中心的循证医疗保健。该提案将提供额外的培训 对于Zhang博士,关于生物医学信息学的高级机器学习,统计和评估方法 临床决策支持(CD)的申请。张博士的长期目标是带来创新CD 通过新颖的生物医学信息学和数据科学技术开发和评估。 机构环境和职业发展: Weill Cornell Medicine(WCM)为张博士提供了理想的研究设施和培训环境。博士 健康政策与研究部健康信息学部负责人Jyotishman Pathak将 领导一个多学科的导师团队:Drs。 WCM的Jessica Ancker和Fei Wang以及Adam Wright博士在 哈佛医学院。张博士还在WCM和Newyork-Presbyterian Hospital的合作者中 将支持她的培训和研究活动,并提供临床专业知识。 研究目的 订单集是计算机化提供商订单输入(CPOE)中的一种CD,以标准化决策制定 订购过程并鼓励遵守临床实践指南。以前关于秩序的文献 设定的使用将其影响放在可用性,工作量和医师满意度上,但知识差距仍然存在 关于订单集对护理结果的影响。研究研究的总体目标是创建一个 通过严格从数据中学习,订单集的持续改进周期相对于护理结果。 该研究的目标1将应用计算表型和亚型算法来识别心脏人群 失败(HF)亚型。 AIM 2将评估用于护理HF患者护理的现有订单 结果定义为30天全因,计划外的再读,并假设该订单集的使用是 与更好的结果相关。这将通过建立一系列结果预测模型和 评估每个顺序设置顺序作为预测指标的强度。 AIM 3将使用 一种元启发式优化方法,使其含量统称可能对 30天全原因未计划的再入院的结果。订单设置使用对护理结果的影响是 在每次迭代中使用因果推理技术测量。预期的结果是一个框架 开发和评估HF顺序集,最终可能会推广到其他临床区域。培训 该建议可能会导致对结果驱动的HF订单集和实际实施的多站点R01研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiye Zhang其他文献

Yiye Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiye Zhang', 18)}}的其他基金

Assessing the Relationship between Care Processes and Clinical Decision Support for Order Entry
评估护理流程与订单输入临床决策支持之间的关系
  • 批准号:
    10002228
  • 财政年份:
    2019
  • 资助金额:
    $ 18.04万
  • 项目类别:
Outcome-driven Order Set Content Development, Management, and Evaluation
结果驱动的订单集内容开发、管理和评估
  • 批准号:
    10242838
  • 财政年份:
    2019
  • 资助金额:
    $ 18.04万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
  • 批准号:
    10698382
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了