Mechanism of Cellulose Synthesis and Transport Across Biological Membranes
纤维素合成和跨生物膜运输的机制
基本信息
- 批准号:10061615
- 负责人:
- 金额:$ 54.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-05 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnabolismArchitectureBacteriaBindingBiochemicalBiologicalBiological AssayBiological ModelsBiophysicsBiopolymersC-terminalCell membraneCellsCelluloseChemicalsChromosomal translocationComplexCouplesCrystallizationDataDepositionElectron MicroscopyEnzymesFiberGlucansGlucoseGlycosidesGreen AlgaeHealthHospitalsHumanHydrolaseIn VitroIndividualInfectionKineticsLengthLipidsMeasurementMembraneMicrobial BiofilmsModelingMolecular ConformationNucleic AcidsOligosaccharidesPlanet EarthPolymersPolysaccharidesPolystyrenesProcessPropertyReactionRegulationResearchResolutionRiskRoentgen RaysSideSlideStructureSurfaceSystemTestingTransmembrane TransportUrochordataVascular PlantVesicleWorkX-Ray Crystallographyantimicrobialaptamerbacterial communitybiophysical techniquescell envelopecellulose synthaseexperimental studygenetic analysisgenetic linkage analysisin vivoinsightmicrobial communitynanodisknovel therapeuticsoptical trapsperiplasmpreventproteoliposomesreconstitutionsingle moleculesmall molecule
项目摘要
Cellulose is the most abundant biopolymer on earth. It is a linear polymer of glucose molecules primarily
formed by vascular plants but also by green algae, bacteria, and even tunicates. Bacterial cellulose is
frequently found in biofilms, which are sessile bacterial communities encased in a 3-dimensional matrix of
polysaccharides, proteinaceous fibers, and nucleic acids. Biofilm bacteria are less susceptible to anti-microbial
treatments and are responsible for about 80% of hospital-derived infections, thereby posing a significant risk to
human health. Developing novel therapeutics to treat or prevent biofilm infections requires a detailed
mechanistic understanding of how the biofilm constituents, in particular polysaccharides, are synthesized and
deposited outside the cell. The proposed research seeks to provide this information.
Bacterial cellulose biosynthesis is an ideal model system to study the mechanism and regulation of exo-
polysaccharide secretion. Gram-negatives produce and secrete cellulose via a multi-subunit complex
consisting of the inner membrane BcsA and BcsB subunits, the periplasmic BcsZ hydrolase, as well as the
outer membrane subunit BcsC. Our previous work provided detailed mechanistic insights into how the inner
membrane-integrated BcsA-B complex elongates the cellulose chain and translocates the polymer across the
plasma membrane. While current data explain how cellulose is extended, we currently have no information on
how cellulose biosynthesis initiates. This question will be addressed biochemically in Aim 1a by reconstituting
the initiation reaction in vitro from cell-free expressed 'uninitiated' cellulose synthase.
BcsA processively elongates cellulose and pushes the polymer into a transmembrane channel formed by its
own membrane-spanning region. Structural snapshots of different cellulose synthase states during cellulose
synthesis and membrane translocation provide insights into conformational changes during this process. Yet a
precise analysis of energetic requirements for and processivity rates of cellulose translocation is currently
missing. We will address these questions on a single molecule level using an optically trapped and catalytically
active BcsA-B complex in Aim 1b.
Past the inner membrane and in Gram-negatives, cellulose must cross the periplasm and the outer membrane
before reaching the biofilm matrix. This section of the translocation path is most likely formed by a direct
interaction of periplasmic and outer membrane components with the BcsA-B complex at the inner membrane.
In Aim 2 we seek to reconstitute outer membrane transport of cellulose from nanodisc and proteoliposome-
reconstituted components for detailed kinetic, biochemical, and interaction studies. This information will
support our efforts to determine the structure of an inner and outer membrane-spanning cellulose synthase
complex as outlined in Aim 3. We will use X-ray crystallography and/or electron microscopy to determine the
structure of individual periplasmic and outer membrane components as well as their complexes with BcsA-B.
纤维素是地球上最丰富的生物聚合物。它主要是葡萄糖分子的线性聚合物
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP.
- DOI:10.1038/nsmb.2803
- 发表时间:2014-05
- 期刊:
- 影响因子:16.8
- 作者:Morgan JL;McNamara JT;Zimmer J
- 通讯作者:Zimmer J
A molecular description of cellulose biosynthesis.
- DOI:10.1146/annurev-biochem-060614-033930
- 发表时间:2015
- 期刊:
- 影响因子:16.6
- 作者:McNamara JT;Morgan JL;Zimmer J
- 通讯作者:Zimmer J
Crystallographic snapshot of cellulose synthesis and membrane translocation.
- DOI:10.1038/nature11744
- 发表时间:2013-01-10
- 期刊:
- 影响因子:64.8
- 作者:
- 通讯作者:
Bicelles coming of age: an empirical approach to bicelle crystallization.
- DOI:10.1016/bs.mie.2014.12.024
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Sandra Poulos;J. Morgan;J. Zimmer;S. Faham
- 通讯作者:Sandra Poulos;J. Morgan;J. Zimmer;S. Faham
Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose.
- DOI:10.1039/c5sc04558d
- 发表时间:2016-05-01
- 期刊:
- 影响因子:8.4
- 作者:Knott BC;Crowley MF;Himmel ME;Zimmer J;Beckham GT
- 通讯作者:Beckham GT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jochen Zimmer其他文献
Jochen Zimmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jochen Zimmer', 18)}}的其他基金
Synthesis, secretion and assembly of extracellular complex carbohydrates in Gram-negative bacteria
革兰氏阴性菌胞外复合碳水化合物的合成、分泌和组装
- 批准号:
10543793 - 财政年份:2022
- 资助金额:
$ 54.73万 - 项目类别:
Synthesis, secretion and assembly of extracellular complex carbohydrates in Gram-negative bacteria
革兰氏阴性菌胞外复合碳水化合物的合成、分泌和组装
- 批准号:
10330628 - 财政年份:2022
- 资助金额:
$ 54.73万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10412117 - 财政年份:2021
- 资助金额:
$ 54.73万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10287699 - 财政年份:2021
- 资助金额:
$ 54.73万 - 项目类别:
Molecular Basis for Group A Streptococcus Encapsulation
A 组链球菌封装的分子基础
- 批准号:
10176394 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Molecular Basis for Group A Streptococcus Encapsulation
A 组链球菌封装的分子基础
- 批准号:
10057347 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Molecular mechanisms of microbial complex carbohydrate secretion
微生物复合碳水化合物分泌的分子机制
- 批准号:
10238961 - 财政年份:2018
- 资助金额:
$ 54.73万 - 项目类别:
Molecular mechanisms of microbial complex carbohydrate secretion
微生物复合碳水化合物分泌的分子机制
- 批准号:
9769067 - 财政年份:2018
- 资助金额:
$ 54.73万 - 项目类别:
Mechanism of cellulose synthesis and transport across biological membranes
纤维素合成和跨生物膜运输的机制
- 批准号:
9016558 - 财政年份:2012
- 资助金额:
$ 54.73万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.73万 - 项目类别:
Research Grant