Improving Hospital Efficiency: Predicting Post-Acute Care Facility Placement Using Machine Learning and Patient Mobility Scores from the Electronic Medical Record

提高医院效率:使用机器学习和电子病历中的患者流动性评分来预测急性后护理设施的安置

基本信息

  • 批准号:
    10056338
  • 负责人:
  • 金额:
    $ 9.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2022-09-29
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract Annually, approximately 8 million people are discharged from an acute care hospital to a post-acute care facility, accounting for >20% of all hospital discharges and >40% of all Medicare discharges. Post-acute care facilities frequently provide rehabilitation services for patients experiencing functional limitations after acute illness who cannot return home safely. Clinicians in acute care hospitals often fail to recognize hospital- acquired functional limitations until after resolution of acute medical/surgical issues. This failure delays hospital discharge and the start of rehabilitation in a post-acute care facility, which can exacerbate hospital-associated functional limitations. Patients' mobility status, one component of physical function, is an important factor in determining the requirement for a post-acute care facility. Simple, validated tools for routinely evaluating patient mobility are increasingly common in acute hospitals but are not routinely used to predict the need for discharge to a post-acute care facility. One such tool, the Activity Measure for Post-Acute Care Inpatient Mobility Short Form (AM-PAC IMSF), is a validated and reliable mobility measure for patients in acute care hospitals. The AM-PAC IMSF is used, as part of routine clinical care throughout hospitalization, for all patients in our acute care hospital. In a pilot study, we demonstrated that lower AM-PAC IMSF scores at hospital admission were strongly associated with post-acute care facility placement. Our goal is to expand upon our preliminary work to develop a formal model to predict which patients are likely to require post- acute care facility placement. Such prediction would be invaluable for improving the discharge planning process and expediting receipt of rehabilitation services at a post-acute care facility. Our overall objective is to demonstrate that prediction models, leveraging `big data' from electronic medical records, can help optimize the hospital discharge process. Thus, we propose the following Aims: 1) To determine if baseline patient mobility status, measured by the AM-PAC IMSF within 48 hours of hospital admission, is predictive of hospital discharge to specific levels of post-acute care; and 2) To develop a dynamic prediction model, using both the hospital admission AM-PAC IMSF score and the subsequent trajectory of daily scores after hospital admission, to predict hospital discharge to specific levels of post-acute care. This proposed research addresses the AHRQ priority of improved efficiency and quality of healthcare delivery via improving the hospital discharge process, with associated improvement in patient outcomes.
项目摘要/摘要 每年,约有800万人从急性护理医院出院,进入急性后护理 设施,占所有医院出院的20%,占所有医疗保险出院的40%。急诊后护理 医疗机构经常为急性发作后出现功能障碍的患者提供康复服务 不能安全回家的病人。急诊医院的临床医生往往不能认识到医院- 在急性内科/外科问题解决之前,后天获得的功能限制。此故障会延迟 出院和在急性后护理机构开始康复,这可能会加剧 医院相关的功能限制。患者的活动状态是身体功能的一个组成部分, 决定对急性后护理设施的需求的一个重要因素。简单、经过验证的工具可用于 在急诊医院,例行评估病人的活动能力越来越普遍,但并不是常规的 预测急症后护理机构的出院需求。一种这样的工具,即急性后活动测量 护理住院患者移动性简表(AM-PAC IMSF)是一种有效且可靠的移动性测量方法,适用于 急救医院。AM-PAC IMSF在住院期间作为常规临床护理的一部分用于 所有在我们急救医院的病人。在一项先导研究中,我们证明了AM-PAC IMSF得分较低 入院与急性后护理机构的安置密切相关。我们的目标是 对我们的初步工作进行扩展,以开发一个正式的模型来预测哪些患者可能需要术后 急诊护理机构安置。这样的预测对于改进排污计划将是非常有价值的。 在急症后护理设施处理和加快康复服务的接收。我们的总体目标是 为了证明预测模型,利用电子病历中的大数据,可以帮助 优化医院出院流程。因此,我们提出了以下目标:1)确定基线是否 由AM-PAC IMSF在入院后48小时内测量的患者活动状态为 预测医院出院到特定的急性后护理水平;以及2)开发动态 预测模型,使用入院AM-PAC IMSF评分和后续 入院后每日评分轨迹,以预测出院至特定水平 急诊后护理。这项拟议的研究解决了AHRQ提高效率和质量的优先事项 通过改善医院出院流程提供医疗服务,并对患者进行相关改进 结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Colantuoni其他文献

Elizabeth Colantuoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Colantuoni', 18)}}的其他基金

Improving the statistical design and analysis of randomized controlled trials of delirium prevention and treatment for critically ill older adults
改进危重老年人谵妄预防和治疗随机对照试验的统计设计和分析
  • 批准号:
    10064600
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
Improving the statistical design and analysis of randomized controlled trials of delirium prevention and treatment for critically ill older adults
改进危重老年人谵妄预防和治疗随机对照试验的统计设计和分析
  • 批准号:
    10356807
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:

相似海外基金

STTR Phase I: Novel Medical Equipment Utilization Tracking System for Improved Patient Safety and Hospital Efficiency
STTR 第一阶段:新型医疗设备使用跟踪系统,以提高患者安全和医院效率
  • 批准号:
    2321886
  • 财政年份:
    2023
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
I-Corps: Novel File Exchange Software Platform to Increase Patient Volume and Hospital System Efficiency
I-Corps:新型文件交换软件平台,可增加患者数量和医院系统效率
  • 批准号:
    2204754
  • 财政年份:
    2022
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Using advanced AI and Natural Language Processing to accurately and automatically predict hospital length of stay, related patient-NHS resource requirements and improve discharge efficiency
使用先进的人工智能和自然语言处理准确自动预测住院时间、相关患者 NHS 资源需求并提高出院效率
  • 批准号:
    84911
  • 财政年份:
    2020
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Collaborative R&D
Operations Research for Hospital Efficiency and Effectiveness
医院效率和效果的运筹学
  • 批准号:
    RGPIN-2015-06056
  • 财政年份:
    2019
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Operations Research for Hospital Efficiency and Effectiveness
医院效率和效果的运筹学
  • 批准号:
    RGPIN-2015-06056
  • 财政年份:
    2018
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Operations Research for Hospital Efficiency and Effectiveness
医院效率和效果的运筹学
  • 批准号:
    RGPIN-2015-06056
  • 财政年份:
    2017
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Operations Research for Hospital Efficiency and Effectiveness
医院效率和效果的运筹学
  • 批准号:
    RGPIN-2015-06056
  • 财政年份:
    2016
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Operations Research for Hospital Efficiency and Effectiveness
医院效率和效果的运筹学
  • 批准号:
    RGPIN-2015-06056
  • 财政年份:
    2015
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hospital Efficiency Changes from Health Information Exchange Participation
参与健康信息交换使医院效率发生变化
  • 批准号:
    8756521
  • 财政年份:
    2014
  • 资助金额:
    $ 9.99万
  • 项目类别:
Evaluation of the measure for the workplace environment allergen reduction in the university hospital seen from validity and economical efficiency
从有效性和经济性角度评价大学医院工作场所环境过敏原减少措施
  • 批准号:
    25460847
  • 财政年份:
    2013
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了