Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach

大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法

基本信息

  • 批准号:
    10056737
  • 负责人:
  • 金额:
    $ 185.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-12 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY: Internalizing/externalizing psychopathologies are identifiable by age 3, with neurodevelopmental risk markers evident in infants. Despite powerful implications for prevention, clinical impact has been minimal. We use innovative computational and epidemiologic data science methods to accelerate clinical translation of neurodevelopmental discovery during infancy towards generalizable risk prediction for preschool psychopathology. Our main objective is generating a pragmatic clinical risk calculator for public health use, the Mental Health Risk Calculator for Young Children (MHRiskCalc-YC). To achieve necessary power and precision, we create the Mental Health, Earlier Synthetic Cohort (MHESC), pooling multiple extramural cohorts at Washington University and Northwestern University to form the first clinically- enriched “synthetic” neuroimaging cohort for generation of neurodevelopmentally-based clinical risk algorithms (N=1,020, followed from birth-54 mos.). To maximize the risk calculator's clinical and research utility and cost effectiveness, we will generate a series of risk algorithms tailored to envisioned end-users, incorporating input from clinical stakeholders. Algorithms will also establish added value of pre-postnatal environmental factors in risk prediction, a crucial but understudied RDoC element. Aim 1 optimizes clinical feasibility and cost effectiveness by generating an MHRiskCalc-YC algorithm derived solely from commonly used survey data to optimize feasibility for future use in primary care settings. Aim 2 optimizes precision of prediction by establishing statistical and clinical incremental utility of more intensive assessment for future use in mental health specialty settings. This algorithm sequentially tests the added predictive value of methods of intermediate-high intensity (from direct assessments to EEG to MRI) for most precise, least burdensome risk prediction. The Aim 3 algorithm is optimized for future clinical research use in neurodevelopmental consortia, modeling the added value of MRI data to the Aim 1 algorithm. This mirrors “common” protocols of neuroimaging consortia and will also generate an empirically-derived best practices guide for consortia to optimize timing/ number of neuroimaging assessments. External validity will be established in the Baby Connectome Project (BCP). The MHESC capitalizes on an unprecedented, time-sensitive opportunity to accelerate scientific and clinical impact of multiple extramural activities that have been extensively pre-aligned. The public health impact of an infancy-based clinical risk prediction tool for preschool psychopathology has transformative potential for altering standard of care in early identification and prevention of mental disorders.
项目总结:内化/外化精神病理学可在3岁时识别, 神经发育风险标志物在婴儿中很明显。尽管对预防具有强大的意义, 影响很小。我们使用创新的计算和流行病学数据科学方法, 加速婴儿期神经发育发现的临床转化, 学龄前精神病理学的预测我们的主要目标是生成一个实用的临床风险计算器 幼儿心理健康风险计算器(MHRiskCalc-YC)。实现 必要的力量和精度,我们创建了心理健康,早期合成队列(MHESC),汇集 华盛顿大学和西北大学的多个校外队列,形成了第一个临床- 用于生成基于神经发育的临床风险算法的丰富的“合成”神经成像队列 (N= 1,020,从出生开始随访-54个月)。最大化风险计算器的临床和研究效用和成本 有效性,我们将产生一系列的风险算法,为设想的最终用户量身定制, 临床利益相关者。算法还将建立产前产后环境因素的附加值, 风险预测,一个关键但未充分研究的RDoC元素。目标1优化临床可行性和成本 通过生成MHRiskCalc-YC算法,仅从常用的调查数据中获得有效性, 优化未来在初级保健环境中使用的可行性。目标2通过以下方式优化预测精度: 建立更密集评估的统计学和临床增量效用,以供将来在精神疾病中使用 健康专业设置。该算法依次测试以下方法的附加预测值: 中-高强度(从直接评估到EEG到MRI),以获得最精确、负担最小的风险 预测. Aim 3算法针对神经发育联合体的未来临床研究用途进行了优化, 对MRI数据对Aim 1算法的附加值进行建模。这反映了“常见”协议, 神经成像联盟,并将产生一个派生的最佳实践指南,为联盟, 优化神经影像学评估的时间/数量。外部有效性将在婴儿中建立 连接组计划(BCP)。MHESC利用一个前所未有的,时间敏感的机会, 加速已经广泛预先调整的多个校外活动的科学和临床影响。 基于婴儿期的学龄前精神病理学临床风险预测工具对公共卫生的影响 改变早期识别和预防精神障碍的护理标准的变革潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOAN L. LUBY其他文献

JOAN L. LUBY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOAN L. LUBY', 18)}}的其他基金

Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
  • 批准号:
    10891170
  • 财政年份:
    2020
  • 资助金额:
    $ 185.9万
  • 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
  • 批准号:
    10577867
  • 财政年份:
    2020
  • 资助金额:
    $ 185.9万
  • 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
  • 批准号:
    10361482
  • 财政年份:
    2020
  • 资助金额:
    $ 185.9万
  • 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
  • 批准号:
    10162666
  • 财政年份:
    2020
  • 资助金额:
    $ 185.9万
  • 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
  • 批准号:
    10158509
  • 财政年份:
    2018
  • 资助金额:
    $ 185.9万
  • 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
  • 批准号:
    10744627
  • 财政年份:
    2018
  • 资助金额:
    $ 185.9万
  • 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
  • 批准号:
    8527571
  • 财政年份:
    2013
  • 资助金额:
    $ 185.9万
  • 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
  • 批准号:
    8683248
  • 财政年份:
    2013
  • 资助金额:
    $ 185.9万
  • 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
  • 批准号:
    7492054
  • 财政年份:
    2007
  • 资助金额:
    $ 185.9万
  • 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
  • 批准号:
    7384798
  • 财政年份:
    2007
  • 资助金额:
    $ 185.9万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 185.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了