Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
基本信息
- 批准号:10056737
- 负责人:
- 金额:$ 185.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-12 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAssessment toolBehavioralBehavioral SciencesBirthBrainCardiovascular systemChildChronic DiseaseClinicClinicalClinical ResearchCognitiveDataData ScienceData SourcesDevelopmentDimensionsDiseaseEarly InterventionEarly identificationElectroencephalographyElementsEnvironmental Risk FactorEpidemiologyExtramural ActivitiesFutureGenerationsHeightInfantInterviewLongevityMagnetic Resonance ImagingMeasurementMeasuresMental HealthMental disordersMethodsModelingNeuronal PlasticityNursery SchoolsOutcomePatternPerformancePhenotypePredictive ValuePreventionPrimary Health CareProperdinProtocols documentationPsychopathologyPublic HealthResearchResearch Domain CriteriaResearch PersonnelResourcesRiskRisk AssessmentRisk MarkerSampling StudiesScienceSeriesSiteStandardizationSurvey MethodologySurveysTestingTimeTo specifyTranslationsUncertaintyUniversitiesValidationWashingtonaffective neurosciencebasebrain behaviorclinical riskclinical translationcognitive neurosciencecohortconnectomecost effectivenessdeep learningearly childhoodearly onsetemotion dysregulationepidemiologic dataimaging modalityimprovedinfancyinnovationlearning strategymedical specialtiesmental disorder preventionmultidisciplinarymultimodalitynervous system disorderneural correlateneurodevelopmentneuroimagingpostnatalprediction algorithmprimary care settingprotective factorsrelating to nervous systemsoundstandard of caretoolvisual tracking
项目摘要
PROJECT SUMMARY: Internalizing/externalizing psychopathologies are identifiable by age 3, with
neurodevelopmental risk markers evident in infants. Despite powerful implications for prevention, clinical
impact has been minimal. We use innovative computational and epidemiologic data science methods to
accelerate clinical translation of neurodevelopmental discovery during infancy towards generalizable risk
prediction for preschool psychopathology. Our main objective is generating a pragmatic clinical risk calculator
for public health use, the Mental Health Risk Calculator for Young Children (MHRiskCalc-YC). To achieve
necessary power and precision, we create the Mental Health, Earlier Synthetic Cohort (MHESC), pooling
multiple extramural cohorts at Washington University and Northwestern University to form the first clinically-
enriched “synthetic” neuroimaging cohort for generation of neurodevelopmentally-based clinical risk algorithms
(N=1,020, followed from birth-54 mos.). To maximize the risk calculator's clinical and research utility and cost
effectiveness, we will generate a series of risk algorithms tailored to envisioned end-users, incorporating input
from clinical stakeholders. Algorithms will also establish added value of pre-postnatal environmental factors in
risk prediction, a crucial but understudied RDoC element. Aim 1 optimizes clinical feasibility and cost
effectiveness by generating an MHRiskCalc-YC algorithm derived solely from commonly used survey data to
optimize feasibility for future use in primary care settings. Aim 2 optimizes precision of prediction by
establishing statistical and clinical incremental utility of more intensive assessment for future use in mental
health specialty settings. This algorithm sequentially tests the added predictive value of methods of
intermediate-high intensity (from direct assessments to EEG to MRI) for most precise, least burdensome risk
prediction. The Aim 3 algorithm is optimized for future clinical research use in neurodevelopmental consortia,
modeling the added value of MRI data to the Aim 1 algorithm. This mirrors “common” protocols of
neuroimaging consortia and will also generate an empirically-derived best practices guide for consortia to
optimize timing/ number of neuroimaging assessments. External validity will be established in the Baby
Connectome Project (BCP). The MHESC capitalizes on an unprecedented, time-sensitive opportunity to
accelerate scientific and clinical impact of multiple extramural activities that have been extensively pre-aligned.
The public health impact of an infancy-based clinical risk prediction tool for preschool psychopathology has
transformative potential for altering standard of care in early identification and prevention of mental disorders.
项目摘要:内化/外化精神病可在3岁前识别,
神经发育风险标记物在婴儿中很明显。尽管对预防的影响很大,但临床上
其影响微乎其微。我们使用创新的计算和流行病学数据科学方法
加速将婴儿期神经发育发现的临床转化为可概括的风险
学龄前儿童精神病理学的预测。我们的主要目标是生成一个实用的临床风险计算器
对于公共卫生用途,幼儿心理健康风险计算器(MHRiskCalc-YC)。要实现
必要的力量和精确度,我们创造了心理健康,早期合成队列(MHESC),池
华盛顿大学和西北大学的多个校外队列组成了第一个临床-
用于生成基于神经发育的临床风险算法的丰富的“合成”神经成像队列
(n=1,020,出生后54个月)。使风险计算器的临床和研究效用和成本最大化
有效性,我们将生成一系列为设想的最终用户量身定做的风险算法,结合输入
来自临床利益相关者。算法还将建立出生前和出生后环境因素的附加值
风险预测,这是一个关键但未被充分研究的RDoC要素。目标1优化临床可行性和成本
通过仅从常用调查数据生成MHRiskCalc-YC算法来提高效率
优化未来在初级保健环境中使用的可行性。目标2通过以下方式优化预测精度
建立更密集的评估的统计和临床增量效用,以供将来在精神病学中使用
健康专业设置。该算法顺序地测试方法的附加预测值
中高强度(从直接评估到EEG再到MRI),以实现最准确、负担最小的风险
预测。Aim 3算法针对神经发育联盟未来的临床研究进行了优化,
将MRI数据的附加值建模到AIM 1算法中。这反映了
并且还将为该联盟生成一份基于经验的最佳实践指南,以
优化神经成像评估的时间/数量。将在婴儿身上建立外部效度
Connectome Project(BCP)。MHESC利用一个前所未有的、对时间敏感的机会
加速广泛预先调整的多种校外活动的科学和临床影响。
以婴儿期为基础的学龄前精神病理学临床风险预测工具对公共健康的影响
在早期识别和预防精神障碍方面改变护理标准的变革性潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOAN L. LUBY其他文献
JOAN L. LUBY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOAN L. LUBY', 18)}}的其他基金
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10891170 - 财政年份:2020
- 资助金额:
$ 185.9万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10577867 - 财政年份:2020
- 资助金额:
$ 185.9万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10361482 - 财政年份:2020
- 资助金额:
$ 185.9万 - 项目类别:
Optimizing prediction of preschool psychopathology from brain: behavior markers of emotion dysregulation from birth: A computational, developmental cognitive neuroscience approach
大脑对学前精神病理学的优化预测:出生后情绪失调的行为标志:一种计算的、发展的认知神经科学方法
- 批准号:
10162666 - 财政年份:2020
- 资助金额:
$ 185.9万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10158509 - 财政年份:2018
- 资助金额:
$ 185.9万 - 项目类别:
Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders
生命早期的逆境、生物嵌入和精神障碍发育先兆的风险
- 批准号:
10744627 - 财政年份:2018
- 资助金额:
$ 185.9万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8527571 - 财政年份:2013
- 资助金额:
$ 185.9万 - 项目类别:
A RANDOMIZED CONTROLLED TRIAL OF PCIT-ED FOR PRESCHOOL DEPRESSION
PCIT-ED 治疗学前抑郁症的随机对照试验
- 批准号:
8683248 - 财政年份:2013
- 资助金额:
$ 185.9万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7492054 - 财政年份:2007
- 资助金额:
$ 185.9万 - 项目类别:
Early Intervention in Depression Dyadic Emotion Development Therapy for Preschool
学龄前抑郁症的早期干预二元情绪发展疗法
- 批准号:
7384798 - 财政年份:2007
- 资助金额:
$ 185.9万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 185.9万 - 项目类别:
Continuing Grant














{{item.name}}会员




