Enabling Technologies for MRI-Guided Prostate Interventions
MRI 引导前列腺干预的支持技术
基本信息
- 批准号:8708508
- 负责人:
- 金额:$ 73.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsBiopsyBiopsy SpecimenBrachytherapyCancer CenterCancer ControlCancer DetectionCaringClassificationClinical ResearchComputer softwareDataDevicesDiagnosisDiagnosticDiagnostic ProcedureDiseaseDoseEarly treatmentEvaluationFDA approvedFeedbackFreedomGenerationsGenomicsGoalsGrantHospitalsImageImageryImplantInterventionJointsLesionLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateManualsMapsModalityModelingModificationMolecularMorbidity - disease rateNeedle biopsy procedureNeedlesPathologyPerformancePhasePhysiciansPositioning AttributePositron-Emission TomographyProceduresProcessProstateProtocols documentationPublic HealthQuantitative EvaluationsRadiationRadiation therapyReportingResearchRobotRoboticsSamplingSeedsSlaveSourceStagingStructureSystemTechniquesTechnologyTestingTimeTissuesToxic effectTracerTransrectal UltrasoundUltrasonographyUncertaintyValidationWomanWorkbasecancer diagnosiscancer sitecancer therapydesigndosagedosimetryhapticsimage guided interventionimage guided therapyimage registrationimprovedmenmultimodalitynovelprogramsprototypequality assurancerobot assistancerobot interfacerobotic devicesoftware systemstreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): Our goal in this proposal is to produce an FDA-approved image-guidance platform for use with MRI or ultrasound to be used sequentially from baseline imaging through prostate biopsy for diagnosis and treatment (brachytherapy) of prostate cancer. Today, the most common diagnostic method for prostate cancer, transrectal ultrasound (TRUS)-guided biopsy, misses cancer a significant percentage of the time. We, therefore, propose to develop an MR/US imaging platform that uses robotic assistance for precise needle placement in two interventions: transperineal biopsy-guided using either a combination of MR or TRUS and MR-guided brachytherapy with an aim to better identify, target, and treat cancer with fewer side effects. Our approach has the capabilities for dynamic, precise, and quantitative evaluation of biopsy needle or needle and source (seed) position and target dosimetry during the course of a brachytherapy procedure. We believe these capabilities can improve overall biopsy yield and/or quality of therapy (improved dosage, reduced morbidity and toxicity). In our process, cancer treatment will benefit from biopsy-confirmed tumor locations that allow for dose escalation and modification of a treatment plan based upon histological mapping of cancer locations. First and second generation devices with software programs have already been developed. In the next cycle, we will develop MR/US registration algorithms and MR/US tissue classification to extend our approaches beyond MR to the more ubiquitous modality of US. We will re-design and validate a remotely actuated master-slave robotic with haptic feedback for needle placement during biopsy and brachytherapy. A physician will fully control the "slave" robot in the bore of the MRI scanner by operating a "master" robotic interface next to the bore for more precise needle placement in biopsies and brachytherapy compared to TRUS- or MR-guided manual approaches. A master/slave robotic device, based upon our first cycle work, will be at the Brigham and Women's Hospital's new image guided therapy suite, the AMIGO, that contains a 3T wide bore magnet. 3T MRI techniques have become a mainstay of all MR imaging protocols at the Brigham, and in the first cycle we have established a 3T template-based transperineal biopsy program. In addition to our supportive preliminary data, we are well prepared to move forward because we have assembled a team with the expertise needed to successfully complete all phases of the research. Our longer term goal, which extends beyond this proposal, is to establish a platform for precise needle placement into image-defined lesions to allow for image-guided molecular diagnostics. By this we mean, ultimately any imaging study, traditional or molecular (e.g PET with C- 11 tracers), can be registered with the techniques we propose here and sampled using our robotic approach. In pursuit of this we would collaborate with the Pathology Core at the Dana Farber-Harvard Cancer Center (NCI center) to begin investigating the phenotypic (imaging) correlates with prostate pathological genomics.
描述(由申请人提供):我们在该提案中的目标是生产一种FDA批准的图像引导平台,用于MRI或超声,从基线成像到前列腺活检依次用于前列腺癌的诊断和治疗(近距离放射治疗)。如今,前列腺癌最常见的诊断方法,即经直肠超声(TRUS)引导活检,在很大一部分时间内会错过癌症。因此,我们建议开发一种MR/US成像平台,该平台在两种干预中使用机器人辅助进行精确的针放置:使用MR或TRUS组合的经会阴活检引导和MR引导近距离放射治疗,旨在更好地识别,靶向和治疗癌症,副作用更少。我们的方法具有在近距离放射治疗过程中动态、精确和定量评价活检针或针和源(种子)位置和目标剂量的能力。我们相信这些能力可以提高整体活检率和/或治疗质量(改善剂量,降低发病率和毒性)。在我们的过程中,癌症治疗将受益于活检确认的肿瘤位置,从而允许根据癌症位置的组织学绘图来增加剂量和修改治疗计划。已经开发出具有软件程序的第一代和第二代设备。在下一个周期中,我们将开发MR/US配准算法和MR/US组织分类,以将我们的方法从MR扩展到更普遍的US模式。我们将重新设计和验证一个远程驱动的主从机器人与触觉反馈活检和近距离放射治疗过程中的针放置。医生将通过操作孔旁边的“主”机器人接口完全控制MRI扫描仪孔中的“从”机器人,以便与TRUS或MR引导的手动方法相比,在活检和近距离放射治疗中更精确地放置针。一个主/从机器人设备,基于我们的第一个周期的工作,将在布里格姆妇女医院的新的图像引导治疗套件,AMIGO,其中包含一个3 T宽孔磁铁。3 T MRI技术已成为Brigham所有MR成像方案的支柱,在第一个周期中,我们已经建立了基于3 T模板的经会阴活检程序。除了支持性的初步数据外,我们已经做好了向前迈进的充分准备,因为我们已经组建了一个拥有成功完成研究所有阶段所需专业知识的团队。我们的长期目标,这超出了这个建议,是建立一个平台,精确的针放置到图像定义的病变,使图像引导的分子诊断。通过这一点,我们的意思是,最终任何成像研究,传统的或分子(例如PET与C- 11示踪剂),可以注册与我们在这里提出的技术,并使用我们的机器人方法采样。为了实现这一目标,我们将与Dana Farber-Harvard癌症中心(NCI中心)的病理学核心合作,开始研究与前列腺病理基因组学相关的表型(成像)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLARE M TEMPANY其他文献
CLARE M TEMPANY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLARE M TEMPANY', 18)}}的其他基金
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10326345 - 财政年份:2021
- 资助金额:
$ 73.39万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10540773 - 财政年份:2021
- 资助金额:
$ 73.39万 - 项目类别:
Generation and Dissemination of Enhanced AI/ML-ready Prostate Cancer Imaging Datasets for Public Use
生成和传播增强型 AI/ML 就绪前列腺癌成像数据集供公众使用
- 批准号:
10842801 - 财政年份:2021
- 资助金额:
$ 73.39万 - 项目类别:
Advanced Technologies - National Center for Image Guided Therapy (AT-NCIGT)
先进技术 - 国家影像引导治疗中心 (AT-NCIGT)
- 批准号:
10090279 - 财政年份:2021
- 资助金额:
$ 73.39万 - 项目类别:
Image Guided Therapy Center - Ultrasound-based sensor system for the monitoring of COVID-19 patients
图像引导治疗中心 - 用于监测 COVID-19 患者的超声波传感器系统
- 批准号:
10224566 - 财政年份:2020
- 资助金额:
$ 73.39万 - 项目类别:
MRI Guided Interventions in the Prostate: Development of an Integrated Image-Base
MRI 引导前列腺干预:集成图像库的开发
- 批准号:
8286361 - 财政年份:2011
- 资助金额:
$ 73.39万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 73.39万 - 项目类别:
Continuing Grant