Deep learning for renal tumor characterization
肾肿瘤特征的深度学习
基本信息
- 批准号:10116348
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAlgorithmsArchitectureAreaBenignBiopsyCharacteristicsClassificationClear cell renal cell carcinomaClinicClinicalClinical DataClinical ManagementComputer softwareDataDetectionDiagnosisDropoutEnsureExcisionFutureGrowthHistologyImageImage AnalysisIndolentInstitutionInterventionInterventional radiologyKidneyKidney NeoplasmsLearningLesionLiteratureMachine LearningMagnetic Resonance ImagingMalignant - descriptorMedical ImagingMetastatic Neoplasm to the KidneyModelingNephrectomyNephronsNeural Network SimulationNormal tissue morphologyOncologyOperative Surgical ProceduresOutcomeOutputPatient imagingPatientsPerformanceProcessRenal Cell CarcinomaRenal MassResearch Project GrantsSelection for TreatmentsSignal TransductionTechniquesTherapeuticTrainingTriageUpdateUrologistWeightbasecancer imagingclinical applicationclinical decision-makingcohortdeep learningdeep neural networkdesignimaging modalityimprovedinterestlearning networknoveloutcome predictionpredictive modelingradiologistradiomicsrandom foresttreatment responsetumor
项目摘要
Our long-term objective is to develop deep learning techniques capable of predicting
characteristics and treatment response or response to surveillance to assist clinical decision-
making in renal tumors that are potential candidates for ablation therapy, biopsy, active
surveillance or surgical resection. An increasing number of renal tumors are being diagnosed,
due in part to incidental detection from the increased use of cross-sectional imaging. Although
partial nephrectomy is still considered the primary treatment for small renal masses,
percutaneous ablation is increasingly performed as a therapeutic, nephron-sparing approach.
One challenge for interventional radiologists and urologists who manage these patients is
selection for therapy, since the average rate of progression is slow for small renal tumors and
metastasis rarely occurs. A technique that could distinguish indolent tumors from those will
progress based on data from the imaging methods used to detect and delineate renal masses
would enable early triage to observation versus invasive treatment. Deep learning, a type of
machine learning technique which takes raw images as input, and applies many layers of
transformations to calculate an output signal, has already led to breakthroughs in other areas of
image recognition, and is increasingly used for medical image analysis. However, its application
in the field of interventional radiology is currently limited. Furthermore, no study in the literature
has applied deep learning to kidney lesion segmentation and characteristics/outcome prediction.
In this project, we propose to develop novel deep learning architectures based on routine MR
imaging that allow for accurate renal mass segmentation and prediction of characteristics and
outcome in renal tumors. Using data from four independent cohorts, we will use our deep
learning architectures to predict (1) benign versus malignant histology (2) growth rate in stage
1a renal cell carcinoma (3) SSIGN score in clear cell renal cell carcinoma and (4) clinical
endpoints. We will integrate segmentation and classification into one net that suitable for clinical
application. In addition, we will compare results with those of experts and traditional machine
learning approaches.
我们的长期目标是开发能够预测
特征和治疗反应或对监测的反应,以协助临床决策-
使肾肿瘤成为消融治疗、活检、活性
监视或手术切除。越来越多的肾肿瘤被诊断出来,
部分原因是由于横截面成像的使用增加而引起的偶然检测。虽然
肾部分切除术仍然被认为是小肾肿块的主要治疗方法,
经皮消融越来越多地作为治疗性的保留肾单位的方法来执行。
介入放射科医生和泌尿科医生管理这些患者的一个挑战是
选择治疗,因为小肾肿瘤的平均进展速度缓慢,
转移很少发生。一种可以区分惰性肿瘤和
基于用于检测和描绘肾脏肿块的成像方法数据的进展
将使早期分诊观察与侵入性治疗。深度学习,一种
机器学习技术,以原始图像作为输入,并应用多层
变换来计算输出信号,已经导致了其他领域的突破,
图像识别,并且越来越多地用于医学图像分析。然而,其应用
目前在介入放射学领域的应用是有限的。此外,文献中没有研究
将深度学习应用于肾脏病变分割和特征/结果预测。
在这个项目中,我们建议开发基于常规MR的新型深度学习架构,
成像允许准确的肾肿块分割和特征预测,
肾肿瘤的结果。使用来自四个独立队列的数据,我们将使用我们的深度
学习体系结构,以预测(1)良性与恶性组织学(2)阶段生长率
1a肾细胞癌(3)透明细胞肾细胞癌的SSIGN评分和(4)临床
端点。我们将分割和分类集成到一个适合临床的网络中,
应用程序.此外,我们将与专家和传统机器的结果进行比较
学习方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harrison Bai其他文献
Harrison Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harrison Bai', 18)}}的其他基金
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant